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Bayesian Deep Learning



What is a Bayesian Neural Network (BNN)

Definition:

A Bayesian neural network is a neural network that uses (approximate)
Bayesian Inference for uncertainty estimation, i.e., we can treat the NN

parameters as random variables and infer them using (approximate)

Bayesian posterior inference.

Traditional DL Approach:
0" = arg maXg E(w,y)N[logp(y‘xa 9)]

 Point Estimation
« May be overconfident in the prediction

(outputs of softmax layer tend to close to 0 or 1). Can not imply the
model’s confidence or uncertainty in the prediction.
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Bayes’ Rule

In BNN, the network parameters 6 are treated as random variables, and
we perform Bayesian Inference on it. In details, we have the following
formula which is called Bayes’ Rule:

D\|0)p(6
p(6|D) = ZE2EE - p(D|9) =TI, p(y,,|z,,, ).

Prior Distribution: p(#), our prior knowledge of NN parameters 6

Likelihood: p(D|#), how well the parameters explain/support observed
data
Posterior: p(0|D), our belief/knowledge of 6 after data observation

Evidence: p(D), to normalize the posterior

S



Bayesian Prediction

Bayesian Predictive distribution:

y*|z*, D) = [ p(y*|z*,0)p(6|D)db

Unfortunately we don’t know how to directly compute p(6|D) nor

p(y*|z*, D). Most of the existing approaches solve the problem in the
following 3 steps:

« Design an approximate posterior q(6) € ) which is easy to compute
and sample from;

» Fit q(6) ~ p(6|D) (Variational Inference, ELBO)
 Approximate predictive inference with Monte Carlo:

y*lz*, D) ~ [p(y*|z*,0)q(0)d0 ~ = 3 p(y*|z*,0;), 0,~q(0).
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Variational Inference to Approximate Posterior

Approximation: ¢*(0) = argmin .o K L[q(0) | p(0|D)],
where

KL[q(0) | p(6|D)] = E,[log q(6) — log p(6|D)].

Further derivation:

o

p(D|8)p(0)

log p(6| D) = log (D)

= log p(D|6) + log p(6) — log p(D),

which means (notice that log p(D) is a constant w.r.t. ¢ and 6):

K L[q(8)||p(0]|D)] = E,[log q(8) — log p(D|€) — log p(8)] + log p(D)
= log p(D) — (Eq[log p(D|6)] — K L[gq(6)||p(6)])
:=logp(D) — ELBO(q, D).

In other words, the below optimisation problems are equivalent:

min K L|q(0)||p(6|D)] < maxELBO(q,D),
qel qeQ

ELBO(g, D) = E,[logp(D|6)] — K L[q(6)|[p(0))-
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Think about ELBO:

Evidence Lower Bound (ELBO):
ELBO(q, D) = E [logp(D|0)] — K'L[q(0) | p(9)]

- Data fitting: E_[log p(D|0)] measures on average how good neural
networks with parameters sampled from q fit the training data.

« Complexity regularization: K L|q(0) | p(6)] describes the amount of
changes of q from the prior p. In BNN literature the prior p on weights
are often set to be less informative (e.g., Gaussian with zero mean and
large variance), in such case the KL term can also be viewed as
regularizing the complexity of q.

Tempered ELBO:
ELBO,(q, D) = E,[logp(D0)] — SK Lig(0) | p(0)

Goal: to balance between the data fitting quality and the complexity .
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Other ways to approximate posteror

Last-layer BNN
ELBOg(q, D) = E,[logp(D|6)] — BKL[q(6") || p(6")]

Monte Carlo dropout
ELBOg(q, D) = E,[logp(D|0)] — (1 —7)ly(¢)

Laplace approximation
MCMC: Mrakov Chain Monte Carlo

Ensemble NNs
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Bayesian Optimization

https://www.overleat.com/1978916912xdpyrmhjvmsh#e83875

10 / 22


https://www.overleaf.com/1978916912xdpyrmhjvmsh#e83875

Uncertainty Measures

« Epistemic uncertainty: also named model uncertainty, this is the

uncertainty due to lack of knowledge, and thus can be reduced by

collecting more data. For example, by flipping a coin multiple times,

we become more and more certain about whether the coin is fair or
bent;

« Aleatoric uncertainty: also named data uncertainty, this is the

uncertainty regarding the stochasticity of individual experimental
outcome, which is non-reducible. For example, even if we are 100%

sure about that the coin is fair, we are still unsure about whether the
next coin flip result will be head or tail.

These two types of uncertainty, when summed, returns the total
uncertainty, i.e.,

total uncertainty = epistemic uncertainty + aleatoric uncertainty.
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Quantify Uncertainty

Shannon Entroy: H[p] = — Zil p.logp..

Total Uncertainty:
Hly*|=*, D] = H[p(y*|z*, D)

= —> p(y* = c|z*, D) logp(y* = c|z*, D)

Aleatoric Uncertainty:
Ep(G\D)H[y* ‘$*, 9] — Ep(9|D)]H[[p(y* ‘ZE*, 0)]

=Eg = 2p(y" = clz*, D)logp(y* = c|z*, D)

Epistemic Uncertainty
Ily*; 0 | «*, D] = H|y*|z*, D] — Epww)H[y*\x*,H]

= Epypor,0) [KLP(Oly", 27, D)|p(6]D)]]
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Paper Reading: Gradient-based
Uncertainty Attribution



Gradient-based UA to Generate the Attribution Map

(a) Forward

(b) Backward

Forward pass of the BDL Model

Input image

BDL Model ¢

6~p(6|D)
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Uncertainty Mitigation via Attribution Map

Attribution Map: M (z)
Attention Weights: A(z) = (1 — M(x)) © M (x)

A(x) :

downsample

B k() k()
|
1

@
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Paper Reading: Epistemic UQ for
Pre-trained NNs



Perturbation-based UQ and BNNs

Proposition 3.1
0* + oe~N(6*,0°I), where &e~N(0,1)

and supy|p(6|D) — N(6;6*,5°I)] — 0

Proposition 3.2

For finite D, we have an upper bound for the distance between p(6|D)
and N (0;0%,0°I), say, Dy [p(0|D)|N(0; 0%, 0°1)].

Proposition 3.3

Equivalence between little perturbations on parameters and on inputs:
f(x,0 + AB) = f(z + Ax,0),
which implies
Ue(x) = Epg K L(p(ylz, 0" + A0)|p(y|z, 67))]
= Eay[KL(p(ylz + Az, 07)p(ylz, 67))].
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Gradient-based UQ and BNNs

Proposition 3.4

of(xz,0°)  ~  Of(z+Az,0%)
06* =0= 00* =0

Proposition 3.5

Proposition 3.5. The epistemic uncertainty derived by the
expected gradient norm can serve as an upper bound com-
pared to the uncertainty produced by perturbation-based
methods when the perturbations are small.

Epl{ﬁ.ﬁ']l [KL[p{y|‘T! H*:] |p[y|$? 0" + &H])]

dlogp(y = c|z,0")
a0~

C
<) ply=clz,0%) Epcan)ll|A0]]]
e=1

dlog p(y|z, 6*)
X Bynpylz,07) IH 20

H (ExGrad [11])

(10)

where A0 — 0 and E, ag)[||A8||] is independent of x.
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Proposed Method

a. Class-specific Gradient Wighting (from 3.5)

O 2
dlo = clz, 07
UREGmd(m) - Z ‘/p{y — C|:E? 9*) H gp(gég: | )
=1

2

|

b. Layer-selective Gradients

Olog p(y|z,0")
09"

dlogp(y|z, 0
807

layer

?E{lg

v ed*

selectve

c. Gradient Perturbation Integration (from 3.4)

dlog p(y|xo, 07)
GYE

perturb dlog p(y|xz;, 0%)
N +1 Z

smoothed
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Plan for Next Week



Reading Plans

1. Naiyu’s paper on “Quantifying Uncertainty in Causal Graphs”

2. Hanjing’s paper on “Diversity-enhanced Probabilistic Ensemble For
Uncertainty Estimation”

3. Hanjing’s paper on “Semantic Attribution For Explainable Uncertainty”
4. The survey paper “A survey of uncertainty in deep neural networks”

Goal: Carefully read the first three papers, and then expand on the
remaining ones and some other works
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Thank you!

Quesitions are welcome!
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