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1. Paper Reading: Uncertainty in
Causal Graphs



1.1 Causal Relationship Vs. Correlation

In real-world tasks, such as prediction, classification or decision-making, data are not only
correlated with the target, the relationships are determined by latent causal relations.

• Traditional ML: focus on the correlation among variables

• Causal Inference: try to capture the causal mechanisms among variables, say, how does a
variable influences our targets variable

This helps us better understand the data generation mechanism and make robust
predictions under different conditions, such as varying domains.
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1.2 The Causal Framework for Prediction Tasks

1.2.1 Data Generation Process • 𝑋: high-dimensional data

• 𝑌 : target variable for prediction

• 𝑈 : domain-specific information

• 𝑍: latent, high-level variables for
generation 𝑋
‣ 𝑍𝑝: parent variables which directly

influence 𝑌
‣ 𝑍𝑐: child variables directly affected by 
𝑌

‣ 𝑍𝑠: spouse variables related to 𝑌
through other connections

‣ 𝑍𝑜: spurious variables correlated with 
𝑌  but not causally linked
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1.2 The Causal Framework for Prediction Tasks

1.2.2 Prediction Tasks uncer Domain Generalizations Settings

• Prediction goal: 𝑝(𝑦|𝑥𝑡, 𝐷)
• MLE approach: 𝐺∗ = max 𝑝(𝐷|𝐺). Challenging, requiring a sufficient number of data,

worse than SOTA domain generalization approaches.
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1.2 The Causal Framework for Prediction Tasks

1.2.3 Bayesian Inference: Sampling 𝐺 from constructed posterior 𝑝(𝐺|𝐷)

The Bayesian causal discovery is usually employed when:

• the data is limited

• point-estimation causal discovery methods lead to poorly calibrated predictions.

More importantly, BI renders the ability to quantify uncertainty.
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1.2 The Causal Framework for Prediction Tasks

1.2.3.1 The Invariant Prediction Mechanism
• 𝑍𝑐𝑚𝑏: the Causal Markov Blanket (CMB) variables, containing 𝑍𝑝, 𝑍𝑐 and 𝑍𝑠.

1.2.3.2 Sample Density Estimation in Graphs
Recall Eq.(1):

𝑝(𝑦|𝑥𝑡, 𝐷) ∝ 𝔼𝐺~𝑝(𝐺|𝐷)[𝑝(𝑦|𝑥𝑡, 𝐷)𝑝(𝑥𝑡|𝐺)]

Directly get 𝑝(𝑥|𝐺) is challenging due to the unavailability of 𝑈  for 𝑥𝑡 in the target domain;
the causal mechanisms in the target domain are also unknown.

𝑝(𝑥𝑡 | 𝐺) ∝ 𝑒−𝛼𝑈𝑒(𝑥|𝐺)
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1.2 The Causal Framework for Prediction Tasks

1.2.4 Uncertainty Quantification in 3 Levels

1. Causal Graph Uncertainty 𝑈(𝐺) : Quantifies the uncertainty in the causal graph’s
posterior distribution, indicating confidence in the learned graph. It can be calculated
from 𝑝(𝐺|𝐷).

2. Single-Graph Prediction Uncertainty 𝑈𝑒(𝑥|𝐺) : Measures uncertainty in predictions
for a given graph 𝐺 , which is critical for OOD predictions. It can be calculated from 
𝑝(𝑦|𝑥𝑡, 𝐺) (epistemic uncertainty).

3. Bayesian Inference Uncertainty 𝑈(𝑥|𝐷) : Quantifies the uncertainty in the final
predictions by incorporating all possible graphs. It can be calculated from 𝑝(𝑦|𝑥𝑡, 𝐷).
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1.3 The Proposed Algorithm: UCD-Bayes

1.3.1 The Training Procedure
1. Learning Latent Variables via iVAE

2. Bayesian Causal Discovery via DAG-GFlowNet

• DAG-GFLowNet: estimates the posterior distribution over causal graphs 𝑝(𝐺|𝐷)
• Goal: The goal of this step is to sample a diverse set of causal graphs from the

posterior distribution 𝑝(𝐺|𝐷), capturing uncertainty about the true causal structure.
These graphs are crucial for the Bayesian inference procedure.

3. Invariant Prediction Mechanism Learning
• A prediction model 𝑝𝜑(𝑌 |𝑍

𝐺𝑙
𝑐𝑚𝑏) is trained for each sampled causal graph 𝐺𝑙 using the

identified CMB variables.
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1.3 The Proposed Algorithm: UCD-Bayes

1.3.2 The Inference Procedure
Obtained: a causal graph set 𝐺 = {𝐺𝑙}𝐿

𝑙=1
 and predictors {𝑝𝜑𝑙(𝑦|𝑍

𝐺𝑙
𝑐𝑚𝑏)}. Given an input 

𝑥𝑡 from test domain, we

1. Compute Single-Graph Prediction Uncertainty {𝑈𝑒(𝑥𝑡|𝐺𝑙)}
𝐿
𝑙=1

To identify which causal graphs are more suitable for predicting a given test sample. This
allows the model to weigh predictions from different graphs based on their fit to the new
data.

2. Estimate Data Density {𝑝(𝑥𝑡|𝐺𝑙)}𝐿
𝑙=1

The goal is to estimate the likelihood of the test sample under each causal graph to
prioritize predictions from graphs that are more consistent with the test data.

3. Bayesian Model Averaging for Final Prediction

𝑝(𝑦|𝑥𝑡, 𝐷) ∝ 𝔼𝐺𝑙~𝑝(𝐺|𝐷)[𝑝(𝑦|𝑧
𝐺𝑙
𝑐𝑚𝑏)𝑝(𝑥𝑡|𝐺𝑙)]
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2. Paper Reading: Diversity-
enhanced Probabilistic Ensemble



2.1 Background

Laplacian Approximation: to construct the posterior distribution 𝑝(𝜃 | 𝐷, 𝛽) around a 
𝜃𝑚𝑎𝑝, where

𝜃𝑚𝑎𝑝 = argmax𝜃 log 𝑝(𝜃 | 𝐷, 𝛽).

And we have

𝑝(𝜃|𝐷, 𝛽) ≈ 𝑁(𝜃𝑚𝑎𝑝, Σ),

where Σ = −(𝐻)−1 and 𝐻 = ∇2𝜃 log 𝑝(𝜃|𝐷, 𝛽)|𝜃 = 𝜃𝑚𝑎𝑝.
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2.2 Probabilistic Ensemble

A mixture of Gaussian in constructed to better approximate the posterior distribution:

𝑝(𝜃|𝐷, 𝛽) ≈∑
𝑁

𝑖=1
𝜆𝑖𝑁(𝜃; 𝜃𝑖, Σ𝑖).

The Bayesian predictive function:

𝑝(𝑦|𝑥,𝐷) ≈ ∫𝑝(𝑦|𝑥, 𝜃)∑
𝑁

𝑖=1
𝜆𝑖𝑁(𝜃; 𝜃𝑖, Σ𝑖)𝑑𝜃

≈
1
𝑆
∑
𝑆

𝑖=1
𝑝(𝑦|𝑥, 𝜃𝑠)

Proposition 3.1: Convergence of PE

sup
𝜃
|𝑝(𝜃|𝐷, 𝛽) −∑

𝑁

𝑖=1
𝜆𝑖𝑁(𝜃; 𝜃𝑖, Σ𝑖)| → 0
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2.2 Probabilistic Ensemble

Proposition 3.2: Better posterior approximation

𝐾𝐿(𝑝(𝜃 | 𝐷, 𝛽)‖𝑝𝑃𝐸(𝜃)) ≤∑
𝑁

𝑖=1
𝜆𝑖𝐾𝐿(𝑝(𝜃;𝐷, 𝛽) ‖ 𝑝𝑖𝐿𝐴(𝜃))

Proposition 3.3: Error Reduction and Diversity Measurement
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2.2 Probabilistic Ensemble

Proposition 3.4: Enhanced Diversity of PE

𝑝𝐷𝐸 =∑𝜆𝑖𝛿(𝜃, 𝜃𝑖)~(𝜇𝐷, Σ𝐷)

𝑝𝑃𝐸 =∑
𝑁

𝑖=1
𝜆𝑖𝑁(𝜃; 𝜃𝑖, Σ𝑖)~(𝜇𝑃 , Σ𝑃 )

𝜇𝐷 = 𝜇𝑃 Σ𝐷 < Σ𝑃

Proposition 3.5: Overconfidence Reduction of PE
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2.3 Adaptive Uncertainty-Guided Ensemble Learning (AUEL)

The uncertainty-guided training loss:

𝐿𝑛𝑙𝑙(𝜃) = −
1
𝐵
∑
𝐵

𝑚=1
𝑤(𝑥𝑚) log(𝑦𝑚 | 𝑥𝑚, 𝜃),

where

𝑤(𝑥𝑚) =
exp(𝑎 ∗ log(𝑢(𝑥𝑚)) + 𝑏)

∑𝐵
𝑗 exp(𝑎 ∗ log(𝑢(𝑥𝑗)) + 𝑏)

.

While a standard Negative Log-likelihood
loss is:

𝐿𝑛𝑙𝑙 =
1
𝑁
∑
𝑁

𝑖=1
log(𝑦𝑖 | 𝑥𝑖, 𝜃).

Rensselaer Polytechnic Institute 16 / 23



2.3 Adaptive Uncertainty-Guided Ensemble Learning (AUEL)

Proposition 3.6: Prediction Error Bound

• The prediction error of the ensemble is bounded by the total uncertainty, providing a
theoretical basis for the uncertainty-guided training approach.

Proposition 3.7: Balance with Uncertainty

• For imbalanced classification problems, the model tends to focus on minority classes,
ensuring that epistemic uncertainty plays a key role in preventing overconfidence in
majority class predictions.
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2.4 Mixture of Gaussian Refinement

Parameters waiting tuned: {{𝜆𝑖}
𝑁
𝑖=1, {𝜃𝑖}

𝑁
𝑖=1, {Σ𝑖}

𝑁
𝑖=1}

Rensselaer Polytechnic Institute 18 / 23



2.4 Mixture of Gaussian Refinement

Closed-form solution for {𝜆∗𝑖}
𝑁
𝑖=1:

Then given 𝑍 ∼ 𝐶𝑎𝑡({𝜆𝑖}), we assign each data samples to its top 𝑙 nearest components
based on their weighted log-likelihood (i.e.,𝑙 =

𝑁
2

).
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3. Paper Reading: Semantic
Attribution for Explainable UQ



3. Paper Reading: Semantic Attribution for Explainable UQ
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4. Plans for Next Week



4. Plans for Next Week

1. Hands-on Coding: build basic Resnet/WideResnet/Transformer and do Uncertainty
Quantification & Evaluation on them using MC-DropOut and Deep Ensemble. (read
original papers before coding)

2. Other paper reading (tentative) plan about Hanjing’s work:
• Uncertainty-Guided Probabilistic Transformer for Complex Action Recognition
• Beyond Dirichlet-based Models: When Bayesian Neural Networks Meet Evidential Deep

Learning

3. A long-term thing: Build up my knowledge in Causal Inference/Discovery ( I will talk it
with Naiyu later for a tentative study plan.)
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