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1. Paper Reading: Uncertainty in
Causal Graphs



1.1 Causal Relationship Vs. Correlation

In real-world tasks, such as prediction, classification or decision-making, data are not only
correlated with the target, the relationships are determined by latent causal relations.

o Traditional ML: focus on the correlation among variables

« Causal Inference: try to capture the causal mechanisms among variables, say, how does a
variable influences our targets variable

This helps us better understand the data generation mechanism and make robust

predictions under different conditions, such as varying domains.
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1.2 The Causal Framework for Prediction Tasks

1.2.1 Data Generation Process
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X: high-dimensional data
Y': target variable for prediction
U: domain-specific information

Z': latent, high-level variables for

generation X

» Z,: parent variables which directly
influence Y

» Z_: child variables directly affected by
Y

» Z_: spouse variables related to Y
through other connections

» Z: spurious variables correlated with
Y but not causally linked
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1.2 The Causal Framework for Prediction Tasks

1.2.2 Prediction Tasks uncer Domain Generalizations Settings

(Observational) Training Domain Data Unseen Test Domain Data

Domain U = 0 Domainll =1 Domain U = L Domain U = ut

» Prediction goal: p(y|z?, D)

« MLE approach: G* = max p(D|G). Challenging, requiring a sufficient number of data,

worse than SOTA domain generalization approaches.
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1.2 The Causal Framework for Prediction Tasks

1.2.3 Bayesian Inference: Sampling GG from constructed posterior p(G|D)

The Bayesian causal discovery is usually employed when:

. the data is limited

- point-estimation causal discovery methods lead to poorly calibrated predictions.

More importantly, BI renders the ability to quantify uncertainty.

p(ylx', D) = f p(ylz*, G, D)p(Gl|z*, D) dG ox Eg.pgip) [P(y\mig)p(m*IG) (1)
G
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1.2 The Causal Framework for Prediction Tasks

1.2.3.1 The Invariant Prediction Mechanism
* Zemp: the Causal Markov Blanket (CMB) variables, containing Z,,, Z, and Z,.

p(ule,9) = [ Yop(ula',z uOp(zule, 9)dz = [ plulf,)p(z5,l",6) 27,

cmb

1.2.3.2 Sample Density Estimation in Graphs
Recall Eq.(1):

p(ylz*, D) Ec p@p) p(ylz*, D)p(z*|G)]

Directly get p(z|G) is challenging due to the unavailability of U for ! in the target domain;
the causal mechanisms in the target domain are also unknown.

p(zt | G) o e=@Ue(@lC)
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1.2 The Causal Framework for Prediction Tasks

1.2.4 Uncertainty Quantification in 3 Levels

1. Causal Graph Uncertainty U(G) : Quantifies the uncertainty in the causal graph’s
posterior distribution, indicating confidence in the learned graph. It can be calculated

from p(G|D).

2. Single-Graph Prediction Uncertainty U,(z|G) : Measures uncertainty in predictions
for a given graph GG , which is critical for OOD predictions. It can be calculated from

p(y|z', G) (epistemic uncertainty).

3. Bayesian Inference Uncertainty U (z|D) : Quantifies the uncertainty in the final
predictions by incorporating all possible graphs. It can be calculated from p(y|z*, D).
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1.3 The Proposed Algorithm: UCD-Bayes

1.3.1 The Training Procedure
1. Learning Latent Variables via iVAE

Livae = —Eg (z12) [ log pe(x|2) + log pr a(2]y, u) — log gy (z|2) ] + Eq, (2) [ V204 (2]2) — Vopr a(2|y, u)|?]

Lepo Lsm

2. Bayesian Causal Discovery via DAG-GFlowNet

« DAG-GFLowNet: estimates the posterior distribution over causal graphs p(G|D)

 Goal: The goal of this step is to sample a diverse set of causal graphs from the
posterior distribution p(G|D), capturing uncertainty about the true causal structure.
These graphs are crucial for the Bayesian inference procedure.

3. Invariant Prediction Mechanism Learning
» A prediction model p, (Y\anfbb
identified CMB variables.
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) is trained for each sampled causal graph G, using the



1.3 The Proposed Algorithm: UCD-Bayes

1.3.2 The Inference Procedure

Obtained: a causal graph set G = {Gl}L

o ) } Given an input

. G
, and predictors {pwz <y|Z ;

cmb

2t from test domain, we

L

1. Compute Single-Graph Prediction Uncertainty {U, (mt\Gl ) }1—1
To identify which causal graphs are more suitable for predicting a given test sample. This
allows the model to weigh predictions from different graphs based on their fit to the new

data.

L

2. Estimate Data Density {p(xt\Gl) }1:1

The goal is to estimate the likelihood of the test sample under each causal graph to
prioritize predictions from graphs that are more consistent with the test data.

3. Bayesian Model Averaging for Final Prediction

G l
p<y|xt7 D) X IE:“Glﬂo(G\D) [p (ylzcnl?,b>p(xt|G ):|
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2. Paper Reading: Diversity-
enhanced Probabilistic Ensemble



2.1 Background

Laplacian Approximation: to construct the posterior distribution p(6 | D, 8) around a
0 map> Where

And we have
p(0|D, B) ~ N(0,,4p,
where ¥ = —(H) ' and H = V2 logp(0|D, 8)|0 = Ormap-

),
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2.2 Probabilistic Ensemble

A mixture of Gaussian in constructed to better approximate the posterior distribution:

p(0|D, B) ~ ZAN@H 5

y Y

The Bayesian predictive function:

N
oz, D) = / p(ylz,0) > AN (6;6;, %,)d6
=1

Proposition 3.1: Convergence of PE

N
sup|p(6|D, B) — > AN (6;6,,%,)| — 0
9 .

Rensselaer Polytechnic Institute 13/ 23



2.2 Probabilistic Ensemble

Proposition 3.2: Better posterior approximation

KL(p(0 | D,B)|ppgp(0) <ZA KL(p(6; D, B) || pi 4(0))

Proposition 3.3: Error Reduction and Diversity Measurement

—log Eg[p(y~|z,0)] <E¢[—logp(y™|x,0)]

]' *
it o Volp(w |2, 0)]
()

where infy m is bounded given p(y*|z,0) € [0, 1]

and Vg |p(y* |z, 8)] is the variance of probabilistic ensemble
model prediction.

Volp(y*|z,0)] = Eo[(p(y*|,0) — Eo[p(y*|z,0)])%] (8)
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2.2 Probabilistic Ensemble

Proposition 3.4: Enhanced Diversity of PE
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2.3 Adaptive Uncertainty-Guided Ensemble Learning (AUEL)

The Pool of

Previous
Models

Add back

Train A New
Model weights

Guided by
Uncertainty
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Establish the

, Probabilistic

Ensemble
Model

Uncertainty
Estimation

The uncertainty-guided training loss:

nll = = = Z w\x log Ym ‘ xm70)

_ explaxlog(u(z,) +8)
37 exp(a+log(u(z;)) + )

While a standard Negative Log-likelihood
loss is:

1 N
nll:N;1 yz|xz70
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2.3 Adaptive Uncertainty-Guided Ensemble Learning (AUEL)

Proposition 3.6: Prediction Error Bound

o The prediction error of the ensemble is bounded by the total uncertainty, providing a
theoretical basis for the uncertainty-guided training approach.

Proposition 3.7: Balance with Uncertainty

 For imbalanced classification problems, the model tends to focus on minority classes,

ensuring that epistemic uncertainty plays a key role in preventing overconfidence in
majority class predictions.
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2.4 Mixture of Gaussian Refinement

Parameters waiting tuned: {{)\i}j\il, {92'}71;11’ {Zz}i\il}

E-step: construct the loss function Q(¢|¢%, D) as the ex-
pected value of the log-likelihood function of ¢ with respect
to the current conditional distribution of Z given ¢° and D.

M
logp(D|¢) = ) log p(Drm|$)
m=1

al Z = .Dms 0
1ogZ§E WP @) D, 2 = ilg)
i=1

M
mZ::l Z = i|Dpn, °)
M N .
> Z = i[Dpn, ¢°) log P Pm:Z = il6)
> f;l;p( i|Dim, ¢°) 8 7 = D)
= Q(4]¢°, D)
(13)

M-step: maximize Q(¢|¢°, D) with respect to ¢.

¢* = argmng(éwosD) (14)
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2.4 Mixture of Gaussian Refinement

Closed-form solution for {)\*}z .

2\ = Eif:l P(Z = i|Dm, ¢°)
L SN p(Z = j|Dp, ¢°)
Letting pm('g) = P(ym|ﬂlm¢ 9):

A0 [ pm(0)N(6;69,50)d6

S X [ P ()N (6;62, 52)d8
(16)

(15)

P(Z — ifIDﬂ’h ‘i’ﬂ) =

Then given Z ~ Cat({)\,}), we assign each data samples to its top [ nearest components

N
based on their weighted log-likelihood (i.e.,l = 3)
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3. Paper Reading: Semantic
Attribution for Explainable UQ



3. Paper Reading: Semantic Attribution for Explainable UQ

Backward pass

Variational
Autoencoder:

———  Encoder —_— z ——, Decoder
q(z|x) disentangled p(x|2)
semantic factors

X
Classification - =
model: .

Backward pass

label uncertainty
> pyIx,0) — U
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4. Plans for Next Week



4. Plans for Next Week

1. Hands-on Coding: build basic Resnet/WideResnet/Transformer and do Uncertainty
Quantification & Evaluation on them using MC-DropOut and Deep Ensemble. (read
original papers before coding)

2. Other paper reading (tentative) plan about Hanjing’s work:
 Uncertainty-Guided Probabilistic Transformer for Complex Action Recognition
« Beyond Dirichlet-based Models: When Bayesian Neural Networks Meet Evidential Deep
Learning

3. A long-term thing: Build up my knowledge in Causal Inference/Discovery ( I will talk it
with Naiyu later for a tentative study plan.)
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