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Introduction

Problem Setup

Bayesian Optimization is a class of machine-learning-based optimization methods

focused on sloving the problem

x̂ = max
x∈A

f (x), (1)

where the feasible set and objective function typically follow some

assumptions/properties.

The input x is in Rd , where typically d ≤ 20.

The feasible set A is a simple set, e.g., box constraints (hyper-rectangle) or a simplex.

f is continuous but lacks special structure, e.g., non-convex.

f is derivative-free, evaluations do not give gradient info.

f is expensive to evaluate.

f may be noisy.

Wang MA (SUSTech/RPI ) Bayesian Optimization July 22, 2024 3 / 48



Introduction

Scenarios Suitable for Bayesian Optimization

1 Expensive function evaluations: the objective function is costly to evaluate, such

as requiring significant computational resources or time

2 Black-box functions: the objective function is a black-box with no explicit analytical

form and no available gradient information.

3 Hyperparameter Optimization: hyperparameter tuning in machine learning models,

such as optimizing learning rates, regularization parameters, etc..

Optimization of expensive functions ariese in

fitting machine learning models

tuning algorithms via backtesting

optimizing physics-based models

drug and materials discovery
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An Overview of Bayesian Optimization

Bayesian Optimization

Algorithm 1 BayesOpt

Assume a Bayesian prior on f

(usually a Gaussian process prior, a probabilistic model of the function)

while budget is not exhausted do
Find x that maximizes acquisition function (x,posterior)
Sample x and observe f (x)
Update the posterior distribution on f
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An Overview of Bayesian Optimization

A 1-dim Example to Bayesian Optimization
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A model of the function: Gaussian Process

Gaussian Process: Definition

A GP is fully specified by its mean function m(x) and covariance function k(x, x′). When

we model our function as f (x) ∼ GP(m(x), k(x, x′), we are saying that

Mean function: m(x) = E[f (x)]
Covariance function: k(x, x′) = E[(f (x)−m(x))(f (x′)−m(x′))]

The mean function m(x) often assumed to be constant or zero for simplicity, say,

m(x) = 0. Covariance functions (kernels) decreases with |x − x′||, commonly used

k(x, x′):

Squared Exponential (RBF): k(x, x′) = σ2
f exp

(
− (x−x′)2

2`2

)
Matern: k(x, x′) = σ2

f
21−ν

Γ(ν)

(√
2ν|x−x′|

`

)ν
Kν

(√
2ν|x−x′|

`

)
Rational Quadratic: k(x, x′) = σ2

f

(
1 + (x−x′)2

2α`2

)−α
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A model of the function: Gaussian Process

Gaussian Process

Gaussian Process

A Gaussian Process is a collection of random variables, any finite number of which have

a joint Gaussian distribution.

As a concrete example, let’s choose:

m(x) = 0 (2)

k(x, x′) = exp(−1

2
(x − x′)T (x − x′)). (3)

Given observations f = [f (x1), f (x2), ..., f (xt)], we would like to make a prediction at a

new point x∗. According to the GP prior, f (x∗) is jointly normally distributed with f so that

Pr

([
f

f ∗

])
= Norm

(
0,

[
K [X ,X ] K [X ,x∗]
K [x∗,X ] K [x∗,x∗]

])
. (4)
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A model of the function: Gaussian Process

Gaussian Process: Predicting

Given the jointly normal property, we have that

Pr(f ∗|f ) = Norm(µ[x∗], σ2[x∗]), (5)

where

µ[x∗] = K [x∗,X ]K [X ,X ]−1f (6)

σ2[x∗] = K [x∗,x∗]− K [x∗,X ]K [X ,X ]−1K [x∗,x∗]. (7)

Using above formula, we can estimate the distribution at any new point x∗. The best

estimate of the funciton value is given by the mean µ[x], and the uncertainty is given by

the variance σ2[x].
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A model of the function: Gaussian Process

Gaussian Process Model
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Acquisition Functions Basic Concepts

Acquisition Functions

Acquisition functions guide the selection of the next point to evaluate by balancing

exploration and exploitation.

Common acquisition functions include:

Probability of Improvement (PI)

Expected Improvement (EI)

Upper Confidence Bound (UCB)
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Acquisition Functions Basic Concepts

Upper Confidence Bound (UCB)

UCB selects points based on an upper confidence bound on the surrogate model’s

predictions.

Mathematically defined as:

UCB[x∗] = µ[x∗] + κσ[x∗], (8)

where κ is a parameter that controls the trade-off between exploration and

exploitation.

This favors either (i) regions where is µ[x∗] large (for exploitation) or (ii) regions

where σ[x∗] is large (for exploration). The positive parameter κ trades off these two

tendencies.

Wang MA (SUSTech/RPI ) Bayesian Optimization July 22, 2024 18 / 48



Acquisition Functions Basic Concepts

Probability of Improvement (PI)

PI aims to maximize the probability that the next sample will improve over the current

maximum.

Mathematically defined as:

PI[x∗] =

∫ ∞

f [x̂]
Normf [x∗][µ[x

∗], σ[x∗]]df [x∗], (9)

where f [x̂] is the current maximum.

This acquisition function computes the likelihood that the function at x∗ will return a result

higher than current maximum. For each point x∗, we integrate the part of the associated

normal distribution that is above the current maximum.
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Acquisition Functions Basic Concepts

Expected Improvement (EI)

EI balances exploration and exploitation by considering both the magnitude and the

probability of improvement.

Mathematically defined as:

EI[x∗] = En[(f [x
∗]− f [x̂])+] (10)

=

∫ ∞

f [x̂]
(f [x∗]− f [x̂])Normf [x∗][µ[x

∗], σ[x∗]]df [x∗]. (11)

Expected Improvement (EI) takes into account how much the improvement will be, so that

we can find the favorable larger improvement. A closed form of EI:

EI[x∗] = [∆(x∗)]+ + σ(x∗)ϕ

(
∆(x∗)

σ(x∗)

)
− |∆(x∗)|Φ

(
−|∆(x∗)|

σ(x∗)

)
, (12)

where ∆(x∗) = µ(x∗)− f [x̂].
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Acquisition Functions Basic Concepts

Expected Improvement: Exploration (σ[x∗]) vs. Exploitation (∆[x∗])
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Acquisition Functions Basic Concepts

Acqusition Functions: Where should we sample next?
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Acquisition Functions Parallel Expected Improvement

Parallel Expected Improvement: Setting

We can parallelize EI:

EI[x1:q] = En[(max (f [x1], ..., f [xq])− f [x̂])+] (13)

How to maximize the parallel expected improvement?

1 Construct an unbiased estimator of the gradient of EI[x1:q].

2 Use multistart stochastic gradient ascent to appoximately maximize EI[x1:q].

Wang MA (SUSTech/RPI ) Bayesian Optimization July 22, 2024 23 / 48



Acquisition Functions Parallel Expected Improvement

PEI: Esitimate ∇EI

Here’s how we estimate ∇EI:

Y = [f [x1], ..., f [xq]] is multivariate normal (GP prior)

Let m = E[Y ] and C = Chol(Cov[Y ])

then Y = m+ CZ, where Z is a vector of independent standard normals

EI[x1:q] = E[h(Y)], where h(Y) = (max[Y ]− f [x̂])+

Assume the problem is well-behaved, then we can switch derivative and expectation:

∇EI[x1:q] = E[∇h(m+ CZ)]
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Acquisition Functions Parallel Expected Improvement

PEI: Esitimate ∇EI

Here’s how we estimate ∇EI:

Simulate a vector Z of independent standard normals

Calculate m = E[Y ] and C = Chol(Cov[Y ])

Then the estimator of ∇EI[x1, ..., xq] is ∇h(m+ CZ), where h(Y) = (max[Y ]− f [x̂])+
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Acquisition Functions Parallel Expected Improvement

Approximately Maximize EI[x1:q]

We use the previous estimator of ∇EI in multistart stochastic gradient ascent:

1 Select several starting points, uniformly at random

2 From each starting point, iterate using the stochastic gradient method until

convregence.

(~x1, ...,~xq)←− (~x1, ...,~xq) + αng(~x1, ...,~xq, ω),

where (αn) is a stepsize sequence,

3 For each starting point, average the iterates to get an estimated stationary point.

(Polyak-Ruppert averaging)

4 Select the estimated stationary point with the best estimated value as the solution.
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Acquisition Functions Parallel Expected Improvement

Parallel Expected Improvement: Illustration
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Acquisition Functions Parallel Expected Improvement

Parallel Expected Improvement: Illustration

Here’s a demonstration on a

6-dimensional Bayesian Optimization

problem with up to 128 parallel

evaluations.
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Acquisition Functions Knowledge Gradients

Knowledge Gradient

KG measures the expected increase in the maximum value of the objective function

after a new observation.

We will not select the previously evaluated point as the final solution: the exploration

can be ”unsuccessful”

Formally, for a candidate point x, KG is defined as:

KG(x) = E[µ∗
n+1 − µ∗

n|observingxn+1]

Here, µ∗
n = maxx µn[x] = maxx En[f (x)] is the best expected value of our ovjective

under the posterior at tiem step n.
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Acquisition Functions Knowledge Gradients

Knowledge Gradient: Formula

Let µ(x) and σ(x) be the posterior mean and standard deviation of the objective

function at x.

The KG acquisition function can be expressed as:

KG(x) = (µ(x)− µ∗
n)Φ

(
∆(x)

σ(x)

)
+ σ(x)φ

(
∆(x)

σ(x)

)
Where:

µ∗
n is the current best observed value.

Φ is the cumulative distribution function of the standard normal distribution.

φ is the probability density function of the standard normal distribution.

Wang MA (SUSTech/RPI ) Bayesian Optimization July 22, 2024 32 / 48



Acquisition Functions Knowledge Gradients

Our approach for optimizing parallel EI also works for optimizing KG

1. Estimate ∇KG(x1:q) using infinitesimal perturbation analysis (IPA) & the

envelope theorem:

∇KG = ∇µn+1(x
∗;m(x1:q) + CZ, x1:q),

calculating the gradient holding x∗ fixed.

2. Use multistart stochastic gradient ascent to maximize KG(x1:q)
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Acquisition Functions Knowledge Gradients

EI May Make Poor Decisions
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Acquisition Functions Knowledge Gradients

Knowledge Gradient is Efficient
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Acquisition Functions Knowledge Gradients

Knowledge Gradient is Efficient
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Acquisition Functions Incorporating noisy measurements

Incorporating Noisy Measurements

We add an extra noise term to the expression for the Gaussian process covariance

E[(y(x)−m(x))(y(x′)−m(x′))] = k(x, x′) + σ2
n, (14)

where y(x) = f (x) + ε is a noisy observation. And the joint normal becomes

Pr

([
f

f ∗

])
= Norm

(
0,

[
K [X ,X ] + σ2

nI K [X ,x∗]
K [x∗,X ] K [x∗,x∗]

])
. (15)

Then We have the conditional distribution with noise:

Pr(f ∗|f ) = Norm(µ[x∗], σ2[x∗]), (16)

where

µ[x∗] = K [x∗,X ]
[
K [X ,X ] + σ2

nI
]−1

f (17)

σ2[x∗] = K [x∗,x∗]− K [x∗,X ]
[
K [X ,X ] + σ2

nI
]−1

K [x∗,x∗]. (18)
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Acquisition Functions Incorporating noisy measurements

Noisy Measurements Illustration
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Acquisition Functions Incorporating noisy measurements

Further Reading

Learning GP parameters: MLE, full Bayesian Approach

Different Probabilistic Models: Random Forest (SMAC)

Discrete Variables: Beta-Bernoulli Bandit

Kernel Choices

Tips, tricks, and limitations

Inducing points

Decomposing the kernel

Using random projections
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Conclusion

Conclusion: Bayesian Optimization

Algorithm 2 BayesOpt

Assume a Bayesian prior on f

(usually a Gaussian process prior, a probabilistic model of the function)

while budget is not exhausted do
Find x that maximizes acquisition function (x,posterior)
Sample x and observe f (x)
Update the posterior distribution on f
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Conclusion

Conclusion: Gaussian Process Regression

Pr(f ∗|f ) = Norm(µ[x∗], σ2[x∗]), (19)

where

µ[x∗] = K [x∗,X ]K [X ,X ]−1f (20)

σ2[x∗] = K [x∗,x∗]− K [x∗,X ]K [X ,X ]−1K [x∗,x∗]. (21)
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Conclusion

Conclusion: Acquisition Functions

Acquisition functions guide the selection of the next point to evaluate by balancing

exploration and exploitation.

Common acquisition functions include:
Probability of Improvement (PI)

PI[x∗] =

∫ ∞

f [x̂]

Normf [x∗][µ[x
∗], σ[x∗]]df [x∗], (22)

Expected Improvement (EI)

EI[x∗] = En[(f [x
∗]− f [x̂])+] (23)

=

∫ ∞

f [x̂]

(f [x∗]− f [x̂])Normf [x∗][µ[x
∗], σ[x∗]]df [x∗]. (24)

Upper Confidence Bound (UCB)

UCB[x∗] = µ[x∗] + κσ[x∗], (25)
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Conclusion
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Conclusion

Bayesian Optimization: END

Thank you!

Questions and Opinions are Welcome!
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