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N ...l
Problem Setup

Bayesian Optimization is a class of machine-learning-based optimization methods
focused on sloving the problem

)A(:r)r(leaz‘;f(x), (1)

where the feasible set and objective function typically follow some
assumptions/properties.

@ The input x is in RY, where typically d < 20.

@ The feasible set A is a simple set, e.g., box constraints (hyper-rectangle) or a simplex.
@ fis continuous but lacks special structure, e.g., non-convex.

@ f is derivative-free, evaluations do not give gradient info.

@ f is expensive to evaluate.

@ f may be noisy.
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Scenarios Suitable for Bayesian Optimization

@ Expensive function evaluations: the objective function is costly to evaluate, such
as requiring significant computational resources or time

@ Black-box functions: the objective function is a black-box with no explicit analytical
form and no available gradient information.

© Hyperparameter Optimization: hyperparameter tuning in machine learning models,
such as optimizing learning rates, regularization parameters, etc..

Optimization of expensive functions ariese in
@ fitting machine learning models
@ tuning algorithms via backtesting
@ optimizing physics-based models
@ drug and materials discovery
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Bayesian Optimization

Algorithm 1 BayesOpt
Assume a Bayesian prior on f
(usually a Gaussian process prior, a probabilistic model of the function)

while budget is not exhausted do
Find x that maximizes acquisition function (x, posterior)
L Sample x and observe f(x)
Update the posterior distribution on f
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A 1-dim Example to Bayesian Optimization
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A 1-dim Example to Bayesian Optimization
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A 1-dim Example to Bayesian Optimization
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A 1-dim Example to Bayesian Optimization
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3. A model of the function: Gaussian Process
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Gaussian Process: Definition

A GP is fully specified by its mean function m(x) and covariance function k(x, x’). When
we model our function as f(x) ~ GP(m(x), k(x, x’), we are saying that

@ Mean function: m(x) = E[f(x)]

@ Covariance function: k(x, x") = E[(f(x) — m(x))(f(x") — m(x"))]

The mean function m(x) often assumed to be constant or zero for simplicity, say,
m(x) = 0. Covariance functions (kernels) decreases with |x — x’||, commonly used
k(x,x"):

@ Squared Exponential (RBF): k(x, x") = a? exp <—%>

e Matern: k(x,x') = QI(V; (\/ﬂlx x I) K, (M)

e Rational Quadratic: k(x,x') = ¢? (1 + (XQLEIQ)Q)_OC
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~ Amodelofthefuncion: Gaussian Process
Gaussian Process

Gaussian Process

A Gaussian Process is a collection of random variables, any finite number of which have
a joint Gaussian distribution.

As a concrete example, let’s choose:

m(x) =0 (2)

k(x,x') = exp(—=(x — x')T(x — x)). (3)

N | =

Given observations f = [f(x1), f(x2), ..., f(xt)], we would like to make a prediction at a
new point x*. According to the GP prior, f(x*) is jointly normally distributed with f so that

() ) e
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Gaussian Process: Predicting

Given the jointly normal property, we have that

Pr(f*|f) = Norm(u[x"], 02[x"]), (5)

where
plx*] = Kix*, XIK[X, X]~'f (6)
02[x*] = K[x*, x*] — K[x*,X]K[X,X]*lK[x*,x*]. (7)

Using above formula, we can estimate the distribution at any new point x*. The best
estimate of the funciton value is given by the mean p[x], and the uncertainty is given by
the variance o2[x].
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Gaussian Process Model
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Acquisition Functions

@ Acquisition functions guide the selection of the next point to evaluate by balancing
exploration and exploitation.

@ Common acquisition functions include:
o Probability of Improvement (PI)

e Expected Improvement (EI)

e Upper Confidence Bound (UCB)
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Upper Confidence Bound (UCB)

@ UCB selects points based on an upper confidence bound on the surrogate model’'s
predictions.

@ Mathematically defined as:

UCB[x*] = ulx*] + rolx"], (8)
where « is a parameter that controls the trade-off between exploration and
exploitation.

@ This favors either (i) regions where is u[x*] large (for exploitation) or (ii) regions
where o[x*| is large (for exploration). The positive parameter « trades off these two
tendencies.
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Probability of Improvement (PI)

@ Pl aims to maximize the probability that the next sample will improve over the current
maximum.

@ Mathematically defined as:

Pl[x*] = :]) Normf[x*][u[x*],a[x*]]df[x*], (9)

where f[X] is the current maximum.

This acquisition function computes the likelihood that the function at x* will return a result
higher than current maximum. For each point x*, we integrate the part of the associated
normal distribution that is above the current maximum.
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Expected Improvement (El)

@ El balances exploration and exploitation by considering both the magnitude and the
probability of improvement.

@ Mathematically defined as:
Ellx*] = En|(f[x"] — f[X])"] (10)

= [ () ) Normye ) o'} (1)
X

Expected Improvement (El) takes into account how much the improvement will be, so that
we can find the favorable larger improvement. A closed form of El:

HVW—M&W*+dﬁw<AWﬂ>—muﬂ¢<JAuw>, (12)

o(x¥) o(x*)

where A(x*) = u(x*) — f[X].

Wang MA (SUSTech/RPI ) Bayesian Optimization July 22, 2024 20/48



Expected Improvement: Exploration (o[x*]) vs. Exploitation (A[x*])
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Acqusition Functions: Where should we sample next?

a) Upper confidence bound

b) Probability of improvement

NV ARV WY

©) Expected improvement

d) Thompson sampling
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Parallel Expected Improvement: Setting

We can parallelize El:

Ellx1.q] = En[(max (F[xu], ... Flxg]) — F[X])7] (13)

How to maximize the parallel expected improvement?

@ Construct an unbiased estimator of the gradient of El[x;.4].
@ Use multistart stochastic gradient ascent to appoximately maximize El[x;.q].
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PEI: Esitimate VEI

Here’s how we estimate VEI:
@ Y = [f[x1], ..., f[Xq]] is multivariate normal (GP prior)
@ Let m=E[Y] and C = Chol(Cov]Y])
@ then Y = m+ CZ, where Z is a vector of independent standard normals
@ Elx1.q] = E[h(Y)], where h(Y) = (max[Y] — f[X])"
@ Assume the problem is well-behaved, then we can switch derivative and expectation:

VEl[x1.q] = E[Vh(m + CZ)]
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PEI: Esitimate VEI

Here’s how we estimate VEI:

@ Simulate a vector Z of independent standard normals
@ Calculate m = E[Y] and C = Chol(Cov[Y])

@ Then the estimator of VEI[xy, ..., X4] is Vh(m + CZ), where h(Y) = (max[Y] — f[X])*
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Approximately Maximize El[x.q]

We use the previous estimator of VEI in multistart stochastic gradient ascent:

@ Select several starting points, uniformly at random

© From each starting point, iterate using the stochastic gradient method until
convregence.
()_(1, ceey Yq) — ()?1, ceey Yq) + Oéng()_()l, ...,)?q,&)),

where («p) is a stepsize sequence,

© For each starting point, average the iterates to get an estimated stationary point.
(Polyak-Ruppert averaging)

© Select the estimated stationary point with the best estimated value as the solution.
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Parallel Expected Improvement

Ion
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Parallel Expected Improvement

Parallel Expected Improvement: lllustration
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Parallel Expected Improvement

Parallel Expected Improvement: lllustration

Sample El and grad El
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Parallel Expected Improvement: lllustration

Here’s a demonstration on a
6-dimensional Bayesian Optimization
problem with up to 128 parallel
evaluations.
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Knowledge Gradient

@ KG measures the expected increase in the maximum value of the objective function
after a new observation.

@ We will not select the previously evaluated point as the final solution: the exploration
can be "unsuccessful”

@ Formally, for a candidate point x, KG is defined as:
KG(x) = Elu., — jlobservingxy..1]

@ Here, u), = maxy un[x] = maxy En[f(x)] is the best expected value of our ovjective
under the posterior at tiem step n.
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Knowledge Gradient: Formula

@ Let (x) and o(x) be the posterior mean and standard deviation of the objective

function at x.

@ The KG acquisition function can be expressed as:

KG() = (ut) — i) (55 )+ atga ()

a(x) a(x)

Where:
e u is the current best observed value.

e d is the cumulative distribution function of the standard normal distribution.
e ¢ is the probability density function of the standard normal distribution.
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Our approach for optimizing parallel El also works for optimizing KG

1. Estimate VKG(x;.q) using infinitesimal perturbation analysis (IPA) & the

envelope theorem:
VKG = Vpn1(X*;m(x1.q) + CZ, X1.q),

calculating the gradient holding x* fixed.

2. Use multistart stochastic gradient ascent to maximize KG(xi.q)
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El May Make Poor Decisions

Posterior @ time n Posterior @ time n+1
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Knowledge Gradient is Efficient
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Knowledge Gradient is Efficient

1.0 1.0
0.5 0.5
0.0 0.0
-0.5 -0.5
-1.0 -1.0
-1.5 -1.5
-2.0 -2.0
-2.5 -2.5
“3-0 30 -15-1.0 6.5 00 05 10 1.5 20 ~30 36 -15 -1.0 -65 00 05 10 15 20
0.5 1.0
-~ dKG -~ dEl
0.4 0.8
0.3 0.6
0.2 0.4
-
0.1 PN o -~ 0.2
// \ e
; \ P N
- e P . )
00 30 -15-1.0 6.5 0.0 05 10 15 2.0 00 30 -1.5 -1.0 6.5 0.0 05 1.0 15 20

Wang MA (SUSTech/RPI) Bayesian Optimization July 22, 2024 36/48



Knowledge Gradient is Efficient
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Knowledge Gradient is Efficient
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Knowledge Gradient is Efficient
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Incorporating Noisy Measurements

We add an extra noise term to the expression for the Gaussian process covariance

E[(y(x) = m(x))(y(x') = m(x'))] = k(x,x') + o7, (14)
where y(x) = f(x) + € is a noisy observation. And the joint normal becomes
pe([7]) = om (o[ 5™ K2 (s
Then We have the conditional distribution with noise:
Pr(f*|f) = Norm(u[x], 0[x"]), (16)
where
ulx*] = Kx*, X] [K[X, X] + o21] ' (17)
o2[x*] = K[x*, x*] — K[x*, X] [K[X, X] + o21] " K[x*, x*]. (18)
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Noisy Measurements lllustration

a) No measurement noise b) Measurement noise
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Further Reading

@ Learning GP parameters: MLE, full Bayesian Approach
@ Different Probabilistic Models: Random Forest (SMAC)
@ Discrete Variables: Beta-Bernoulli Bandit

@ Kernel Choices

@ Tips, tricks, and limitations

@ Inducing points
e Decomposing the kernel
@ Using random projections
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Conclusion: Bayesian Optimization

Algorithm 2 BayesOpt
Assume a Bayesian prior on f
(usually a Gaussian process prior, a probabilistic model of the function)

while budget is not exhausted do
Find x that maximizes acquisition function (x, posterior)
L Sample x and observe f(x)
Update the posterior distribution on f
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Conclusion: Gaussian Process Regression

Pr(F*|F) = Norm(u[x*], o%[x"]), (19)

where
ulx*] = Kix*, X|K[X, X' (20)
o?[x*] = K[x*, x*] — K[x*, X]K[X, X] 'K [x*, x*]. (21)
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Conclusion: Acquisition Functions
@ Acquisition functions guide the selection of the next point to evaluate by balancing

exploration and exploitation.

@ Common acquisition functions include:
@ Probability of Improvement (PI)

Pilc) = |~ Norme ], ol x| (22)
%]
o Expected Improvement (El)
Ellx"] = En[(f[x"] — f[x])"] (23)
= /f[‘] (FIx*] = FIX]))Normyp-1 [u[x*], o [x*]]df[x*]. (24)

o Upper Confidence Bound (UCB)
UCBI[x*] = p[x*] + ko [x*], (25)
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N LU
Bayesian Optimization: END

Thank you!

Questions and Opinions are Welcome!
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