
The Neural Tanget Kernel

Reporter : Xun-Jian LI

Outline

1 Introduction

2 Infinite width neural networks

3 Training dynamics

4 Empirical NTK for a shallow network

5 Analytical NTK for shallow network

6 Empirical NTK for a deep network

7 Analytical NTK for deep network

8 Conclusion

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 2 / 50

Introduction

Introduction

1.1 The gradient flow

♦ Gradient flow in linear models with least squares losses (gradient descent
with an infinitesimal step size)

♦ Evolution of the parameters, loss, and predictions

♦ Trainability and training converges of a system

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 3 / 50

Introduction

1.2 The neural tangent kernel

♦ In the infinite width limit, a neural network behaves as if it is linear

♦ Its training dynamics can be captured by the neural tangent kernel
(NTK)

♦ The NTK can be computed in closed–form for infinitely wide networks

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 4 / 50

Introduction

1.3 Applications

♦ The neural tangent kernel provides insights into the trainability and con-
vergence of neural networks

♦ The NTK can be regarded as a non-linear transformation of the input
data, which allows us to reinterpret inference in neural networks as a kernel
regression problem and make predictions in closed–form without ever
explicitly training the network.

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 5 / 50

Infinite width neural
networks

Infinite width neural networks

2.1 Infinite width neural networks

What happens when increase the width of neural network?

Define the network with both the input x and the output y are scalar:

♦ h1,h2 ∈ RD: the D hidden units in the first and second hidden layers
♦ D: the D hidden units second hidden layers
♦ ReLU(·): the elementwise application of the standard ReLU function.
♦ Weights: ω0 ∈ RD×1, Ω1 ∈ RD×D, Ω2 ∈ R1×D

♦ Bias: β0 ∈ RD, β1 ∈ RD, β2 ∈ R
(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 6 / 50

Infinite width neural networks

Figure 2. Neural networks (ploted by ChatGPT)

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 7 / 50

Infinite width neural networks

2.2 Initialization of ANN parameters

Initializing ANN parameters by drawing from a normal distribution (called
Kaiming initialization, He et al. 2015) is crucial for several reasons:

Symmetry Breaking: Ensures that different neurons learn different fea-
tures by preventing them from starting with identical weights.

Effective Training: Helps in achieving a balanced variance in activations,
which promotes stable and efficient gradient propagation during training.

Theoretical Underpinning: Underpins theoretical results such as the
infinite-width neural networks converging to Gaussian processes, aiding
in understanding and optimizing learning dynamics (Lee et al. 2019).

This initialization strategy lays the foundation for effective learning and
convergence in ANNs.

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 8 / 50

Infinite width neural networks

At initialization, artificial neural networks (ANNs) are equivalent to Gaussian
processes in the infinite-width limit, thus connecting them to kernel methods
(Jacot et al. 2018).

♦ A Gaussian process (GP) is a non-parametric Bayesian method used for
regression and classification tasks. It can be viewed as a distribution over
functions, where any finite set of functions has a joint Gaussian distribution.
A GP is defined by a mean function and a kernel function (covariance
function), which describes the similarity between data points.

♦ kernel method: Kernel methods are machine learning algorithms based on
kernel functions, such as Support Vector Machines (SVM) and kernel ridge
regression. Kernel functions map input data to a high-dimensional
feature space, enabling linear methods to handle nonlinear problems in
that space.

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 9 / 50

Infinite width neural networks

♦ Data on I = 10 data pairs (xi, yi) where both inputs xi and targets yi are
drawn from a standard normal distribution

♦ Initialize the biases to zero and the weights from a standard normal
distribution

♦ Stochastic gradient descent with momentum to train networks with
different widths D = 10, 50, 1000

The changes of individual parameters is less as the growth of the
width?
This is expected since the responsibility for describing the finite dataset becomes
distributed between more and more parameters, so the change in any given
parameter is smaller.

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 10 / 50

Infinite width neural networks

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 11 / 50

Infinite width neural networks

♦ Figure 2a depicts the Frobenius norms of original weights and their
changes increasing as the width increases as the growth of weights.

♦ Figure 2b depicts the norm of the change in weights is roughly con-
stant; but this change is distributed across more parameters as the width
increases, so the individual weights change less.

♦ The tendency of the weights to remain nearly constant by the ratio of the
norm of the change to the norm of the original weights (figure 2c).

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 12 / 50

Infinite width neural networks

2.3 Mathematical characterization of weight change

♦ Neural network with D hidden unit:

f(x,ϕ) =
1√
D

D∑
d=1

θd · a[ϕdx] (2.1)

where a[·] is a Lipschitz activation function, and the weights θd that map
from the hidden layer to the output are assigned randomly to ±1 and fixed.

♦ Parameters are initialized from a standard normal distribution.

♦ Loss function:

L[ϕ] =
1

2

I∑
i=1

(f(x,ϕ)− yi)
2
. (2.2)

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 13 / 50

Infinite width neural networks

2.4 Analysis of gradient flow

♦ With gradient flow, the evolution of a parameters ϕd is defined by:
dϕd

dt
= − ∂L

∂ϕd
= − 1√

D
(f(x,ϕ)− yi) θdxi · a′[ϕdx]. (2.3)

♦ Now consider the total change in a parameter over time:∥∥ϕd[t]− ϕd[0]
∥∥
2
⩽
∫ T

0

∥∥∥ dϕd[t]

dt

∥∥∥
2
= O

[1√
D

]
. (2.4)

• ∥f(x,ϕ)− yi∥ decreases over time
• θdxi is constant
• a′[ϕdx] is limited by steepest slope of the activation function

♦ Consequently, the change in the weight is dominated by 1/
√
D and becomes

infinitesimal as D → ∞ (Jacot et al. 2018).

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 14 / 50

Infinite width neural networks

2.5 Linear approximation
Taking a Taylor expansion around the initial parameters ϕ0, we could
approximate the network output as:

f(x,ϕ) ≈ f(x,ϕ) +

[
∂f(x,ϕ0)

∂ϕ0

]⊤
(ϕ− ϕ0),

where ϕ contains the current parameters.

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 15 / 50

Infinite width neural networks

When this linear approximation is valid, then

♦ We can write closed-form expressions for the training evolution of
the loss and the parameters.

♦ We can also find closed-form solutions for the final predictions.

♦ It follows that if the network is approximately linear at large widths, there
would be analogous results for neural networks, and these could provide
valuable insights about trainability, convergence, and generaliza-
tion.

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 16 / 50

Infinite width neural networks

2.6 Validity of linear approximation

♦ The linear approximation will be valid if the curvature of with respect
to the parameters is small in the limited region;

♦ More formally, Liu et al. (2020) identified that the spectral norm of the
Hessian matrix containing the second derivatives must be small compared
to the magnitude of the gradient in a ball of a certain radius.

f(x) ≈ f(x0) +∇f(x0)(x− x0) +
1

2
(x− x0)

TH(x0)(x− x0)

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 17 / 50

Infinite width neural networks

♦ The Hessian matrix H ∈ RD×D of the toy neural network is diagonal with
values:

Hdd =
∂2f(x,ϕ)

∂ϕ2
d

=
1√
D
θda

′′[ϕdx]x
2.

♦ If ∥x∥ ⩽ C, then:

∥H∥ = max
d

[∥H∥dd] =
x2

√
D

max
d

{θda′′[ϕdx]} ⩽ C2

√
D

max
d

{θda′′[ϕdx]} ⩽ C2A√
D

where A is the maximum value of the second derivative a′′[·].

♦ It’s clear that as D → ∞, the Hessian norm converges to zero.

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 18 / 50

Infinite width neural networks

♦ The magnitude of the derivative vector:
D∑

d=1

(
∂f(x,ϕ)

∂ϕd

)2

=
1

D

D∑
d=1

x2a′[ϕdx],

where the θ2d terms have disappeared as they equal one regardless of whether
they were ±1.

♦ It’s easy to see that the magnitude of the gradient stays roughly
constant as D → ∞ because the factor 1/D cancels with the D terms in
the sum.

♦ It follows that as the width D increases, the curvature (Hessian) decreases,
but the gradient (derivative vector) stays constant, and so the linear ap-
proximation is reasonable for this simple network when the width be-
comes very large.

♦ A more general proof for multi-layer networks with multiple inputs is pro-
vided by Liu et al. (2020).

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 19 / 50

Infinite width neural networks

2.7 Derivative vector as non-linear transformation

As the hidden layers of neural networks become infinitely large:
♦ The change in any individual parameter from their initialized values

during training decreases

♦ The magnitude of the gradient of the function with respect to the param-
eter vector at initialization stays approximately constant

♦ The second derivatives of the function with respect to the parameter
vector at initialization decrease

We can write:

f(x,ϕ) ≈ f lin(x,ϕ) = f(x,ϕ0) +

[
∂f(x,ϕ0)

∂ϕ0

]⊤
(ϕ− ϕ0),

where x is an input example, and ϕ0 is a vector containing all of the initial
weights and biases.

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 20 / 50

Infinite width neural networks

2.8 Interpretation

♦ A linear function of a fixed non-linear transformation g(x) of the input
x:

f lin(x,ϕ) = f(x,ϕ0) + g(x)⊤(ϕ− ϕ0),

where
g(x) =

∂f(x,ϕ0)

∂ϕ0

.

♦ Note that the kernel methods which rely on dot products between non-
linear transformations g(xi) and g(xj) of input data examples xi, xj .

♦ The term neural derives from neural networks, the term tangent from the
first term in the Taylor expansion (see figure 3), and the term kernel from
the interpretation of the gradient vector as a non-linear transformation of
the input data.

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 21 / 50

Training dynamics

Training dynamics

♦ In the previous section, we saw that in the infinite width limit, the network
predictions for an input x become a linear model with parameters ϕ

♦ In part I of this series, we found closed–form expressions for the train-
ing dynamics for linear models

♦ Now, we combine these observations to find closed-form expressions for
the training dynamics of neural networks in the infinite limit

For convenience,

♦ store the I training data vectors {xi} in the columns of a matrix X ∈ RD×I

♦ store the targets {yi} in a column vector y ∈ RI×1

♦ A neural network model f(X,ϕ) is applied to all of the data simultaneously
and produces an I × 1 column vector whose ith entry is f(xi,ϕ)

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 22 / 50

Training dynamics

♦ The linear model can now be written as:

f lin(X,ϕ) = f(X,ϕ) +

[
∂f(X,ϕ0)

∂ϕ0

]⊤
(ϕ− ϕ0).

♦ In part I of this series, we showed that the ODE that governs the evolution
of the residual differences between model predictions f(X,ϕ) and the
ground truth targets y is:

d

dt
[f(X,ϕ)− y] = −

([
∂f(X,ϕ0)

∂ϕ

∂f(X,ϕ0)

∂ϕ

]⊤)
[f(X,ϕ)− y] .

♦ This ODE has a closed form solution:

f(X,ϕt) = exp

{
−

([
∂f(X,ϕ0)

∂ϕ

∂f(X,ϕ0)

∂ϕ

]⊤
t

)}
[f(X,ϕ)− y] + y. (3.1)

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 23 / 50

Training dynamics

3.1 The neural tangent kernel

♦ We now refer to the I × I matrix from equation (3.1) as the neural tangent
kernel (NTK):

NTK[X,X] =
∂f(X,ϕ0)

∂ϕ

∂f(X,ϕ0)

∂ϕ

⊤

♦ If we could compute this term, then we would have a closed–form solu-
tion for the evolution of the residuals, and the contents of this matrix
would shine a light on the trainability and convergence speed of the system.

♦ In principle could compute the NTK for a neural network by simply com-
puting the derivatives for every training example xi using the backpropa-
gation algorithm and taking the appropriate dot products.

♦ However, it turns out that for some models, we can get a closed form
solution for the NTK.

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 24 / 50

Training dynamics

♦ The NTK measures the change in f(x, θ) when using SGD to optimize
parameters, corresponding to a random sample x, after a very small step
size η in parameter updates.

♦ In particular:

NTK(x, x′) = lim
η→0

f
(
x, θ + η df(x′,θ)

dθ

)
− f(x, θ)

η

♦ Using a 1st order Taylor expansion of fθ(x), it is possible to show that

NTKθ(x, x
′) =

〈
df(x, θ)

dθ
,
df(x′, θ)

dθ

〉

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 25 / 50

Training dynamics

3.2 An intuitive understanding of the NTK

♦ Consider an example of a linear function, defined as f(x, θ) = θ1x+ θ2

♦ Initialize the parameters as θ1 = 3 and θ2 = 1.

♦ Consider a sample point (x, y) = (10, 50). Based on this sample, perform
a gradient descent update on the parameters.

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 26 / 50

Empirical NTK for a
shallow network

Empirical NTK for a shallow network

♦ Consider a shallow neural network with D hidden units:

f(x,ϕ) =
1√
D

D∑
d=1

w1d · a[w0dx] (4.1)

♦ The derivatives with regards to the two sets of parameters are:

∂f(x,ϕ)

∂w0d
=

1√
D

D∑
d=1

a′[w0dx] · w1dx,

∂f(x,ϕ)

∂w1d
=

1√
D
a[w0dx].

♦ Since the inner product of the concatenated derivatives just the sum of
the inner products of the individual derivatives, we can write a closed form
expression for the kernel:

NTK[xi,xj] =

D∑
d=1

∂f(xi,ϕ)

∂w0d

∂f(xj ,ϕ)

∂w0d
+

∂f(xi,ϕ)

∂w1d

∂f(xj ,ϕ)

∂w1d

=
1√
D

D∑
d=1

w2
1da

′[w0dxi]a
′[w0dxj]x

⊤
jxj + a[w0dxi]a[w0dxj].

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 27 / 50

Empirical NTK for a shallow network

The ReLU

To make this concrete, we consider using the rectified linear unit (ReLU):

a[z] = ReLU[z] =

{
0 , z < 0

z , z ⩾ 0

which has the derivative (figure 4):

a′[z] =
dReLU[z]

dz
=

{
0 , z < 0

1 , z ⩾ 0

or I[z > 0] for short.

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 28 / 50

Empirical NTK for a shallow network

The rectified linear unit (ReLU) activation function.

Figure 4. The rectified linear unit (ReLU) activation function.

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 29 / 50

Empirical NTK for a shallow network

The neural tangent kernel

The neural tangent kernel is given by:

NTK[xi,xj] =
1√
D

D∑
d=1

w2
1dI[w0dxi > 0]I[w0dxj > 0]x⊤jxj

+ ReLU[w0dxi]ReLU[w0dxj]. (4.2)

♦ The first term is the component due to the derivatives in w0d

♦ The second term is the component due to the derivatives in w1d

♦ For finite width networks, the neural tangent kernel (however it was calcu-
lated) depends on the particular random draw of the parameters and here
it’s referred to as the empirical tangent kernel.

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 30 / 50

Analytical NTK for shallow
network

Analytical NTK for shallow network

Let D → ∞, then the expectation in equation (4.2) becomes:

NTK[xi,xj] =Ew0,w1

{
w2

1I[w0xi > 0]I[w0xj > 0]x⊤ixj

+ ReLU[w0xi]ReLU[w0xj]} .

For variables z = [zi, zj]
⊤ with mean 0 and covariance:

Σ =

[
σ2
i σ2

ij

σ2
ij σ

2
j

]
,

it can (non-obviously) be shown (Cho & Saul 2009; Golikov et al. 2022) that

E [ReLU[zi] ·ReLU[zj]] =
σiσj [cos(θ) · (π − θ) + sin(θ)]

2π

E [I[zi > 0] · I[zj > 0]] = (π − θ)/2π

where

θ = arccos

[
σ2
ij

σiσj

]
.

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 31 / 50

Analytical NTK for shallow network

♦ Assuming that both sets of weights are initialized from a standard
normal distribution, we have σi = |xi|, σj = |xj | and σij = x⊤ixj which
gives the final result:

NTK[xi,xj] =
x⊤ixj

2π
(π − θ) +

|xi| · |xj |
2π

[(π − θ) cos θ + sin θ] . (5.1)

♦ Note that in the infinite limit, the kernel is constant; it does not de-
pend on the initial choices for the parameters. We term this the analytical
kernel.

♦ This result can be extended to deep neural networks where the kernel
at each layer is computed as a function of the kernel at the previous layer.

♦ The analytical NTK also been calculated for convolutional networks
(Arora et al., 2019, Li et al. 2019) and other common architectures.

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 32 / 50

Empirical NTK for a deep
network

Empirical NTK for a deep network

♦ We can similarly compute the NTK for a deep neural network.

♦ The NTK is computed iteratively, by expressing the NTK for a depth L

network in terms of the NTK for a depth L− 1 network.

♦ It is rather mathematically involved and can be skipped on the first reading.

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 33 / 50

Empirical NTK for a deep network

Linear model, one output

♦ Consider a linear model f0(x,ϕ0) with D outputs

f0(x,ϕ0) = β0 +
1√
Din

w0x

where Din is the input data dimension and the parameters ϕ0 = {β0,w0}
comprise the bias β0 ∈ R and the weights w0 ∈ R1×Din .

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 34 / 50

Empirical NTK for a deep network

♦ The value of the NTK at position (i, j) is:

NTK[xi,xj] =
∂f(xi,ϕ0)

∂ϕ0

⊤
∂f(xj ,ϕ0)

∂ϕ

=
∂f(xi,ϕ0)

∂w0

⊤
∂f(xj ,ϕ0)

∂w0
+

∂f(xi,ϕ0)

∂β0

⊤
∂f(xj ,ϕ0)

∂β0

=
1

Din
x⊤ixj + 1.

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 35 / 50

Empirical NTK for a deep network

Linear model, D output

♦ We start with a linear model f0(x,ϕ0):

f0,d(x,ϕ0) = β0,d +
1√
Din

w0,dx (6.1)

where β0,d ∈ R and w0,d ∈ R1×Din .

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 36 / 50

Empirical NTK for a deep network

♦ The neural tangent kernel now has ID× ID elements which correspond to
the dot product of the gradients for every pair of the I input vectors and
D outputs. It is arranged to form I × I sub-kernels NTKd,d′ [xi,xj] each
of size D ×D and containing sub-elements.

♦ By the same logic as the previous section each has the same value:

NTKd,d′ [xi,xj] =
1

Din
x⊤ixj + 1.

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 37 / 50

Empirical NTK for a deep network

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 38 / 50

Empirical NTK for a deep network

Fully connected network with one layer

♦ Consider a fully connected network f1(x,ϕ1) with a single output and
D hidden layer containing D neurons, associated parameters

ϕ1 = {β0,Ω0, β1,w1}

and activation function a[·]:

f1(x,ϕ1) = β1 +
1√
D
w1a [f0(x,ϕ0)] (6.2)

where the preactivation f0,d[x,ϕ] at each hidden unit is the linear function
discussed above:

f0,d(x,ϕ0) = βd +
1√
Din

w0dx (6.3)

and ϕ0 = {β0,1, . . . , β0,Din
,w0,1, . . . ,w0,Din

}

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 39 / 50

Empirical NTK for a deep network

Plot of fully connected network with one layer:

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 40 / 50

Empirical NTK for a deep network

♦ The derivatives of f1(x,ϕ1) with respect to the unknown quantities are:
∂f1(x,ϕ1)

∂w1
=

1√
D
a′[f0[x,ϕ0]]

∂f1(x,ϕ1)

∂β1
= 1

∂f(x,ϕ)

∂ϕ0

=
1√
D

(
1a′[f0[x,ϕ0]]

⊙ ∂f0(x,ϕ0)

∂ϕ0

)
w⊤

1, (6.4)

where ∂f0(x,ϕ0)/∂ϕ0 is a |ϕ0| × D matrix which is block diagonal since
only Din weights and one bias in ϕ0 modify any particular element of the
activation vector. The term 1 is a |ϕ| × 1 column vector containing only
ones, and

⊙
represents pointwise multiplication.

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 41 / 50

Empirical NTK for a deep network

♦ Now we compute the elements NTK(1) of the kernel for this shallow net-
work by taking the dot products of the derivatives with respect to the
parameters:

NTK(1)[xi,xj] =
∂f1(xi,ϕ1)

∂w1

⊤
∂f1(xj ,ϕ1)

∂w1
+

∂f1(xi,ϕ1)

∂β1

⊤
∂f1(xj ,ϕ1)

∂β1

+
∂f(xi,ϕ1)

∂ϕ0

⊤
∂f(xj ,ϕ1)

∂ϕ0

.

♦ Substituting in the derivatives from equation (6.4), we see that:

NTK(1)[xi,xj] =
1

D

(
a[f0(xi,ϕ0)]

⊤a[f0(xj ,ϕ0)] +D

+ w1

(
a′[f0(xi,ϕ0)]a

′[f0(xj ,ϕ0)]
⊤
⊙ ∂f0(xi,ϕ0)

∂ϕ0

⊤
∂f0(xj ,ϕ0)

∂ϕ0

)
w⊤

1

)
.

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 42 / 50

Empirical NTK for a deep network

♦ Noting that the product of the derivative terms is just the neural tangent
kernel from the single layer network, we see that:

NTK(1)[xi,xj] =
1

D

(
a[f0(xi,ϕ0)]

⊤a[f0(xj ,ϕ0)] +D

+ w1

(
a′[f0(xi,ϕ0)]a

′[f0(xj ,ϕ0)]
⊤
⊙

NTK(0)[xi,xj]
)
w⊤

1

)
.

♦ Hence, the NTK for the network with one hidden layer can be written in
terms of the NTK for a network with no hidden layers.

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 43 / 50

Empirical NTK for a deep network

Recursive calculation of kernel

♦ In the previous equation, we the kernel NTK(1)[xi,xj] associated with
the single output of a shallow network in terms of the D × D subkernel
NTK(0)[xi,xj] of the preactivations. As might be expected, there is a
general formula that relates the kernel values at layer l to those at layer
l − 1:

NTK
(0)
d,d′ [xi,xj] =

1

Din
x⊤ixj + 1

NTK
(l)
d,d′ [xi,xj] =

1

D

{
a[fl−1(xi,ϕl−1)]

⊤a[fl−1(xj ,ϕl−1)] +D

+ wld

(
a′[fl−1(xi,ϕl−1)]a

′[fl−1(xj ,ϕl−1)]
⊤
⊙

NTK(l−1)[xi,xj]
)
w⊤

ld′

}
.

We can use this recursive formulation to calculate the kernel for networks
of arbitrary depth

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 44 / 50

Empirical NTK for a deep network

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 45 / 50

Analytical NTK for deep
network

Analytical NTK for deep network

To compute the analytical NTK, we let the number of hidden units in each
dimension become infinite. The expectations are

NTK
(0)
d,d′ [xi,xj] =

1

Din
x⊤ixj + 1

NTK
(l)
d,d′ [xi,xj] =Kl[x,x

′] + 1 +K ′
l [xi,xj]

⊙
NTK(l−1)[xi,xj] (7.1)

where:

K0[xi,xj] = xix
⊤
j + 1

K ′
0[xi,xj] = xix

⊤
j + 1

Kl[xi,xj] =Efl−1∼N [0,Kl−1]

[
a[fl−1(xi,ϕl−1)]

⊤a[fl−1(xj ,ϕl−1)]
]

K ′
l [xi,xj] =Efl−1∼N [0,Kl−1]

[
a′[fl−1(xi,ϕl−1)]

⊤a′[fl−1(xj ,ϕl−1)]
]

(7.2)

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 46 / 50

Analytical NTK for deep network

Analytical NTK for deep ReLU network
Assume that we use a ReLU for the activation functions, then the derivative is
a′[z] = I[z > 0], and we can again use the results that for expectations taken
with respect to a normal distribution with mean zero and covariance:

Σ =

[
σ2
i σ2

ij

σ2
ij σ

2
j

]
,

we have

Efl−1∼N [0,Kl−1] [ReLU[zi] ·ReLU[zj]] = σiσj (cos[θ] · (π − θ) + sin[θ]) /2π

Efl−1∼N [0,Kl−1] [I[zi > 0] · I[zj > 0]] = π − θ/2π

where

θ = arccos

[
σ2
ij

σiσj

]
.

A cursory inspection of these equations reveals that substituting these results
into the recursive formulae in equations (7.1)–(7.2) with L = 1 yields the
NTK for a shallow ReLU network that we derived in equation (5.1).

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 47 / 50

Conclusion

Conclusion

Conclusion

♦ When neural networks become very wide, their parameters do not
change much during training and they can be considered as approximately
linear.

♦ This linearity means that we can write a closed–form solution for the
training dynamics, and this closed–form solution depends critically on
the neural tangent kernel.

♦ Each element of the neural tangent kernel consists of the inner product of
the vectors of derivatives for a pair of training data examples.

♦ This can be calculated for any network and we call this the empirical
NTK.

♦ If we let the width become infinite, then we can get closed–form solutions,
which are referred to as analytical NTKs.

♦ We derived these solutions for both shallow and deep ReLU networks.

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 48 / 50

Conclusion

Q & A

THANK YOU For Your Attention!

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 49 / 50

Conclusion

References

Cho, Y., & Saul, L. (2009). Kernel methods for deep learning. Advances in neural information processing
systems, 22.

Golikov, E., Pokonechnyy, E., & Korviakov, V. (2022). Neural tangent kernel: A survey. arXiv preprint
arXiv:2208.13614.

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In Proceedings of the IEEE international conference on computer vision
(pp. 1026-1034).

Jacot, A., Gabriel, F., & Hongler, C. (2018). Neural tangent kernel: Convergence and generalization in
neural networks. Advances in neural information processing systems, 31.

Lee, J., Xiao, L., Schoenholz, S., Bahri, Y., Novak, R., Sohl-Dickstein, J., & Pennington, J. (2019). Wide
neural networks of any depth evolve as linear models under gradient descent. Advances in neural information
processing systems, 32.

Liu, C., Zhu, L., & Belkin, M. (2020). On the linearity of large non-linear models: when and why the tangent
kernel is constant. Advances in Neural Information Processing Systems, 33, 15954–15964.

Neal, R. M., & Neal, R. M. (1996). Priors for infinite networks. Bayesian learning for neural networks, 29-53.

(Xun-Jian LI · SUSTech) The Neural Tanget Kernel 2024.08.05 50 / 50

	Introduction
	Infinite width neural networks
	Training dynamics
	Empirical NTK for a shallow network
	Analytical NTK for shallow network
	Empirical NTK for a deep network
	Analytical NTK for deep network
	Conclusion

