202k Summer Seminor - Final Topic

An ntrooluction o
Bwyes?an NPM Networks

= V\lanﬂ Mo

Slides reference : ProF. Y‘mjzhen Li C ProbAl 2o022)

An Introduction to Bayesian Neural Networks

Yingzhen Li

vingzhen.li@imperial.ac.uk

T
wanne GEE
T T LT L@

o7 . 5 o |
9000 0 0 A" .
0 90000 @ it sevol
°ese . 00:01:00
o T S®

AlphaGo

% “% o e rplacelll(",", " 7, a); a = @i
% % whw a.split(" ");) $("funigue™)
) W8 = array from ‘

— ucatu

Deep Learning

2

brain tumor_ m

type "A

/7 1 are you sure? why?

\ A\
/,: ::{:Q

i | -
go%'l'ﬂ\m(& ifgfi\‘l;’l [Q)\

= \ %
Do you know what C\' & | 3&&

you don't know? ﬁ | %7 - 0.
How confident are you? N2

Bayesian Inference P(ow) e
n(0) = p(f|data)
4 | ./

N —e

¢
Wﬁ 7] glven data ﬁé& 9% {%&3]’6 ﬁa ij%

P(6] data): posterior distribution of & given data
P(data): marginal likelihood/model evidence
P(data) = [P(8)P(data | 6)
~ -

Image courtesy of Sebastian Nowozin
Re-use of the image for any other purpose is not allowed

- esion predbiction digrribwtior
Bayesian Inference Bavjes

* The central egquation for Bayesian inference: [J
- (0,9 (&
‘P/(E{) fF(H) §9|D)d@ *PLGID) i

o* “What is the prediction
MAdistribution of the test output v
given a test input?” 0.0-

0.5+

¥
F(0) =py|x,6), 9"9 —0.5-

D = observed datapomts
* 6 —1.01
P(/ X)

— PreerCﬂM

Bayesian Neural Network (BNN) 101
LS

Classifying different types of animals: Y (atbd’
e x:inputimage; v: output label #04

put image; y: outp { g%%_ﬂcat"
: N

e Build a neural network with parameters 6:

p(ylx,0) = softmax(fg(x)) |

J

Bw
\J %ﬁi

Bayesian Neural Network (BNN) 101

L
:‘\‘ — — — ucatu
@ Yo

N

A typical neural network (with non-linearity g@l:

fo(x) =wltg(Wt=tg(..gW' x + b)) + bL71) + b,

e

Al = g(Wl Rt 4+ bY), bt = g(W x + bY).

Neural network parameters: 8 = {W!, b'};_,
AL

M

Bayesian Neural Network (BNN) 101

¥,
»4, .{«r'.’_> g%%_»ncatu
. o

Typical deep learning solution:

e Optimize 6 to obtain a point estimates (MLE): 0‘
e 17kelihoodl.

= argmax lg@J_@_))

lOgP(D | 9) = g=1 logp(yn |xnr 9) , D = {(xn' yn)}ivpl

~
* Prediction: using p(y” |ZC* \

Bayesian Neural Network (BNN) 101

—» p(“cat” |z, D)

Bayesian solution:
* Puta prior p(€) on network parameters 6, e.g. Gaussian prior

»(6) =N(6;0,0°1)

 Compute the posterior distribution p(8 | D): P(D) e\ﬂo.e’we‘
p(0 | D)Y&p(D | 0) p(8)/]> & T b)

e Bayesian predictive inference:
p(y* | x*,D) = Epo | py[p(y" | x7,0)] &
v___/\

Bayesian Neural Network (BNN) 101

Approximate (Bayesian) inference solution:
* Exact posterior intractable, use approximate posterior:
q@) =p@|D) &

* Approximate Bayesian predictive mference g/
p(y” | x%, D) @_—]q(e p(y* [x*,0)
. Monte Carlo apprOX|mat|on V%cel

PO 1x%,D) ~ = SK L p(y” |2 (B), 6 ~a(6)

—

10

Bayesian Neural Network (BNN) 101
X Z P(Y’”’(\‘f Bk). ‘)“’6

/

panda (panda panda |panda ﬂ

&8 & Q &\

01 02 93 04

R
Prediction on in-distribution data:

ensemble over networks, using weights sampled from q(8)

6.-30

. bz
/ m\ a

11

Bayesian Neural Network (BNN) 101
Ovipt2.(Mpoada €71

u + 0.007x u

g\x\"w\{' PMO\M

d |
o b o
panda gibbon panda panda monkey 39"‘9 POJWU‘
- s i 2 D X
| B e & & . /\
] W |m |m N
91 92 03 94 65
~ S~ ¢ ~ .

Prediction on OOD/noisy/adversarial data:
Disagreement (i.e. uncertainty) exists over networks sampled from;(@)

ftshy DL O porda- 37 3‘}"""\

01 §w) Dr w2 Glo)e NCTYTS
Bayesian Neural Network BN

Y] =z 0
0- %W) | P(Y lX ©=6 P(M-’? Mo‘/uﬁ»’
0~ O~ ~ + 0.007 x ~ 1'\((7cw).
0> 7\, ‘ g
e ' \I \/ natural adversarial s%" w
\, image image ‘g‘ / 7A—f01‘9"°e

@\ gibbon g|bbon g|bbon gibbon gibbon
~\. " S S
B @ @

(][] [
91%90 92N00 63~90 94~90 95~90

Prediction on Aadversan@ when q(6) is over-confd_ ent: N[B, 6>1)

Return confidently wrong answers (close to point estlmate) g’

13

Bayesian Neural Network (BNN) 101

&

natural
image

%

panda

bear

wolf

bear

tiger

iéi iéb GED d

L
2

||
0-

|
0;

N

]
0,

-

L
05

gl
—

N\

(6

Prediction on in-distribution data when g (6) is under-confident:
_~— — .
Low accuracy in prediction tasks (less desirable)

14

Approximate Inference in BNNs

* Key steps of approximate inference in BNNs

1. Construct the q(8) ~ p(8 | D) distribution

e Simple dlstrlbutlons e.g. Mean-field Ga@_a_n__(/ .
e Structured approximations, e.g. low-rank Gaussians =,

e Others (non- Gau55|an)

(&
b= W, Ll’t < ﬂéma‘i‘b%’ __Ll"-

See my NeurlPS 2020 tutorial on approximate inference 15

Approximate Inference in BNNs

* Key steps of approximate inference in BNNs
1. Constructthe q(8) ~ p(0 | D) distribution 14

e Simple distributions: e.g. Mean-field Gaussian
e Structured approximations, e.g. low-rank Gaussians

(o) = p@PL P

e Others (non-Gaussian)

2. Fitthe g(8) distribution

* E.g. withw_ %U/)

pre oliceion

¢ 10) ol6-
plyk | X D) = j o (y*[x*.8) P(®)

See my NeurlPS 2020 tutorial on approximate inference J_ (x)(*) Qk)) 6" "'/)(G/D) 16
= py*]

Approximate Inference in BNNs

* Key steps of approximate inference in BNNs
1. Constructthe q(8) = p(6 | D) distribution

e Simple distributions: e.g. Mean-field Gaussian
e Structured approximations, e.g. low-rank Gaussians

e Others (non-Gaussian)

2. Fitthe g(8) distribution

* E.g. with variational inference u
o] + 0.007x
3. Compute prediction with Monte Carlo | :

——— —\ natural

approximations image

| panda I |gibbon I | panda I | panda I |monkey|
léb 1*' lél iéb)
[NN] [Em] [em] [EN] (E
91 02 03 94 95

See my NeurlPS 2020 tutorial on approximate inference

adversarial
image

Today’s agenda

e Lecture on Basics: MFVI for BNNs

e Hands-on tutorial on BNNs
* i.e., programming exercises
* Also some case studies

Part |: Basics
—. %w) =) P(EID)

e Variational inference

* Bayes-by-backprop

19

Bayesian Inference
%@(’ (;\"A’W\ X? P‘Zfaé\%-;/*'?

N ot

P(D)

-

« P(6): prior

« P(D | 6): likelihood
 P(O|D): posterior
 P(D): marginal

Image courtesy of Sebastian Nowozin
Re-use of the image for any other purpose is not allowed

Variational Inference (VI)

The posterior The variational distribution

p(61D) = p(D |8)p(6)/p(D) ~— w
| j—j_le}'

21

Inference as Optimization

q4(0)

o — e
T

Kullback-Leibler (KL) divergence

KL [pel? //%yﬁc@d \ﬁ

22

Kullback-Leibler Divergence

' 6 V)
TR0 = a0 g 0 =B

Jenssen — shonnon.

* Whenp =gq, KLisO
e Otherwise, KL>0
* |t measures how similar are these two distributions

Let’s Derive the Objective of VI

* Minimize KL[q(0)||p(6|D)] _ lag 1

DD = 5o [3G

Let’s Derive the Objective of VI
* Minimize KL[q(8)||p(8|D)] p(o; 0)/{,(,7)

 p(
KL[q(@)||lp(8|D)] = —Eq4cs) | log c(,(le))])

= —Eq o) [log p?(iql)(;) = —E.) [log—(& low]

Let’s Derive the Objective of VI

* Minimize KL[qgemp(H D)]

J\/

(61D)
KL[q(8)|lp(81D)] = —Eq(e) [log pq(H)

p(6,D) p(6,D)
R _ECI(Q) [lng(D)q(8) = —L (6 lOg q(6) {ng(D)

p(6,D)
70—t

=|logp(D)IR E, lo
logp(D) Eaee { log
Model Evidence

g2

Let’s Derive the Objective of VI

Minimize KL[q(8)||p(6]D)]
—

KL[q(8)||p(0|D)] = logp(D) — E4(s) [log

Mammﬁ@[log 7(0)]

p(6,D)
q(6)

Let’s Derive the Objective of VI

‘Minimize KL[q(6)||p(6|D)]

/\ p(6,D)

KL[q(6)||p(6|D)] =‘108p(D)\— Eq6) [mg q(6)

710') Model Evidence
E+ kL= Uy POl Loﬂ p(n) > E.
\o— — -

Maximize L = Egp) [log p;?;;) logp(D)
Evidence Lower Bound (ELBO) KL[q®)lIp(61D)]
ELBO

“Model Evidence = ELBO + KL~

28

Variational Inference (VI)

The posterior

p(0|D) = p(D|6)p(8)/p(D)
p () 0) =

The variational distribution

Jole) P D 45 (6)

L—E@[q¢(0)] logp(D) — KL[q4(8)IIp(6)] |

V~

q €
q(0)

O

p(81D)

kL: o (| peel)

29

Variational Inference (VI) kL,
g o)~ o™ 785

* Rewriting the ELBO: maX %' L pe) ¥ $0V°’+”“
logp(D) = L= Eq¢(9)[l gp(DI0)] FKL[ag(O)lp(O)]
Data flttlngt'erm T’f \i/ [KL regulariser Sl
(Negative) Data fitting term: P(,G'D) - L X PmoT

- Like the usual DL loss you’ll use for training neural networks T |
...except that now the network’s weights are sampled from g 4\
MLE

KL regulariser:
- Make the g distribution closer to the prior
- Regularises the approximate posterior, especially when using e.g., Gaussian prior

30

Approximate Inference in BNNs

* Key steps of approximate inference in BNNs
1. Constructthe q(8) = p(6 | D) distribution

e Simple distributions: e.g. Mean-field Gaussian
e Structured approximations, e.g. low-rank Gaussians

e Others (non-Gaussian)

2. Fitthe g(8) distribution

* E.g. with variational inference u
o] + 0.007x
3. Compute prediction with Monte Carlo | f;

natural

approximations image

| panda I |gibbon I | panda I | panda I |monkey|
lél 1*' lél 1$|)
[NN] [Em] [em] [EN] (E
01 02 93 94 95

See my NeurlPS 2020 tutorial on approximate inference

adversarial
image

Approximate Inference in BNNs

* Step 1: construct the g(8) = p(6 | D) distribution

e Example: Mean-fieIdLGaussian distribution: ceb.

a0 =] Jawaey
=T ¢ 4

aw) = | [awi, a(w) = Nwis Ml vy

\/'\/_\——\ v\

a(b') = TI;q(8), q(b) = N m, v}

D

 Variational parameters: ¢ = { log Vi ml,log Vl} _
N~ -

ijr ij>
R ‘ gé‘p‘

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015 32

Approximate Inference in BNNs

* Step 2: fit the g(0) distribution:
* Variational inference:(¢p)= argmax L(¢)
L(¢) = Eq,o)llogp(D | 6)] - KL[qs(8) || p(6)]

N ~

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015

33

Approximate Inference in BNNs

* Step 2: fit the g(8) distribution: ek

* Variational inference: ¢~ = a L
L($) =|Eq4o)[logp(D | 9)1 ﬁ KL|q4(0) || p(8)]

* First scalable technique: Stochastic or;cimization —-
* i.i.d. assumption of data: logp(D | 8) = XN_; logp(yy, |xn, 6)
* Enable mini—ba@) training with {(x,,,, V)3 ~ D™ :

@
L(¢p) = = Eqoyllogp(ym | xm, 8)] — KL|q(8) || p(6)]
M’l’nz:]_ ! \/'v—’

~

SN
-

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015

34

Vi Vp.
Approximate Inference in BNNs o <
* Step 2: fit the q(8) distribution: 0
e (0) distriby 50 3D
* Variational inference: ¢™ = argmax L(¢) P —
L(¢) = Eq, @ [logp(D | 0)] = KL[q4(®) || p(0)] 2W 4. P
* First scalable technique: Stochastic optimization o D 3\)\/
* i.i.d. assumption of data: logp(D | 8) = ¥N_,log p(yy, |x,, 0) BW QN\\A’)
* Enable mini- batch training with {(x,,, V) } ~ DM : QO éW

L(¢) !zwlogp(ymlxm,ﬁ)] KL[q(8) || p(8)] oW an

reweighting to ensure calibrated
posterior concentration

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015 35

Approximate Inference in BNNs

* Step 2: fit the q (@) distribution:
* 2nd scalable technique: Monte Carlo sampling

* Eq0) [logp(y | x, 8)] intractable even with Gaussian q(6)
«"Solution: Monte Carlo estlmate

.
1
Eqo)llogp(y |x,0)] = ~ z gp(y 1x, B) Ox ~ q(0)
L .

—

-

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015

36

Approximate Inference in BNNs

* Step 2: fit the q (@) distribution:
* 2nd scalable technique: Monte Carlo sampling

* Eqllogp(y | x, 6)] intractable even with Gaussian q(6)
* Solution: Monte Carlo estimate:

1
Eqo)llogp(y |x,0)] = e z logp(y |x,6x),

¢__Reparameterization trick to sample mean-field Gaussians:
HkNCI(H)C)Qk —m0+0'9®Ek Ek"’N(O [)
~——

D\. T ’f 1
- bk 9Bk o
oMg Jée

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015 37

Approximate Inference in BNNs

* Step 2: fit the q (@) distribution:
* 2nd scalable technique: Monte Carlo sampling

L
f

* Eqllogp(y | x, 6)] intractable even with Gaussian q(6)

* Solution: Monte Carlo estimate: 0

Eqeo)llogp(y |x, 6)] = zlogp(y %, 0k), Ok ~q(6) / |
* Reparameterization trick to sample mean-field Gaussians: 0 6 e

Hk NCI(H) C}Qk = Mg +O'9 @Ek, €k "’N(O,I)

backprop

K
1
= Eqeo) llogp(y Ix,0)] = 7 Z logp(y |, 6 = mg + dger), & ~ N(O, 1)
|—/\ P /‘ . e - _

T N

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015 38

Approximate Inference in BNNs

* Combining both steps:
M % 7

N 1 -
LORITDN- ;mgp(ym | xm, 61) = KL[g(0) 11 p(0)], 05 ~ 9(6)

m=

analytic petween two Gaussians
(if not, can also be estimated with Monte Carla)

In regression:
p(y | x,60) = N(fy(x),0%)

In classification:
p(y | x,0) = Categorical(logit = fy(x))

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015

39

Approximate Inference in BNNs w¢.

e Step 3: compute prediction with Monte Carlo approximations:

r) ok 1 C s (®|p)
p(y |x'D)zEZIk{=1p(y |x;_2&?) Hk N E\/

Mean-field Gaussian case:
Q + 0.007x

Hk = Mg + Op @ €k, €Ex ~ N(O,])
natural adversarial % (9)
image image

| panda I |gibbon| | panda I | panda I lmonkeyl %(W) N N (M ? V)
B & & EGE o - V) 8
Iﬁl lﬁl lﬁl Iﬁl /. ”A W= MV

0, 0, 0 0, 0; q(0) 8 ’\N [0’ 2

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015 40

Part [l: Bayesian MLPs

* Implement various BNN methods for MLP architectures
* Regression example test

e Case study 1: Bayesian Optimisation with UCB

42

https://bit.ly/3zF1zvA

Instructions for using this Google Colab notebook:

* Make sure you have signed in with your Google account;
* Click “File > Save a copy in Drive” to create your own copy;

* Let’s play around with the demo using your own copy!

43

5 Voriptin 1"10"/‘ -
Findings with I\/IFVI for Bayesian MLPs

‘[T‘(,CW’%)'

mean 102'“1 > $L°7

MIXtAre

. . . . GrosSipn.
Findings with MFVI for Bayesian MLPs ﬁﬂ
LB L

* MFVI tends to underfit Wb _m—-

* Initialisation matters &)

* Tuning thel\oeta paramfler also helps >) F’ 'AL [%¢ (o) “ P(ﬁ)

cLb0 = e 1673

/I:'j free (unch theor <

2 BB AV o 4P pap BV 154 L
P ﬁ-\ ”f | —

45

Findings with MFVI for Bayesian MLPs

e MFVI tends to underfit

* |nitialisation matters
* Tuning the beta parameter also helps

* Uncertainty behaviour

10 -

\[/ :

AN

BNN approx. posterior (MFVI{

® data

= ground-truth
- prediction mean (/)

total uncertainty

’ model uncertainty

Va

uncertarn?)/
—_—

46

Using other g distributions?
el

* Using more complicated q distributions? % . mean f
* Pros: more flexible approximations = better posterior approximations (?)
e Cons: hlgher time & space compIeX|t|es

gew= T ‘(r(‘”a) &

- ()

47

Using other g distributions?

* Using more complicated q distributions?

* Pros: more flexible approximations = better posterior approximations (?)

* Cons: higher time & space complexities] 10 romo(ow\ vmﬂoJDP
deorerministe

* We will look at 2 alternatives: ()

* “Last-layer BNN": Full covariance Gaussian approximations for the last layer
* MC-Dropout: adding dropout layers and run them in both train & test time

v

48

Layer :

“Last-layer BNN”

* Use deterministic layers for all but the last layer
* For the last layer: Use Full-covariance Gaussian approximate posterior:

% q(6') %KWI Ml bt = ml) [=1,..,L—=1, <
q(HL) = N(vechL) vec(u"), _) oL = {WL bL}

* For regression this is equwalent to Bayesian Imear regression (BLR)
W
with NN-based non Imear features

X %ﬁfelLl(x)ﬁBl_R_’P()’Me)

49

“Last-layer BNN”

* Use deterministic layers for all but the last layer
* For the last layer: Use Full-covariance Gaussian approximate posterior

* For regression this is equivalent to Bayesian linear regression |
with NN-based non-linear features

— fori-1(x) —> BLR — p(y|x,6) @

g L %w@ $

_ faendd. (9)

L = Eq[logp(D | 6)] — KL[q(6") || p(6")]
— ‘ N

Use {eterminisfic weights for_l_z&...,L_’_:_l KL regulariser for the last layer only
Sample Wt ~ q(W1h) - 50

0
MC-Dropout 0

| :
Y w [ge el
* Add dropout layers to the network — ‘
¢ Perform drOpOUt during training L2 regulariser on the variational parameters
). Wo 7/",:.@,—”-"
L = Eqllogp(D]60)] — (1 —m)?2(¢) wo ~N (0]6)
h’ﬁ—'\’/\ - ‘!(/‘a -
The MC sampling procedure is implicitly defined Dropout ratg . ﬂ

* In test time, run multiple forward passes with dropout

k * 1 * k
p(y* 1x7,D) = = L1 p(v™ | %7, 0x), 6k "'\61(9)

The MC sampling procedure is implicitly defined

Gal and Ghahramani. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. ICML 2016. 51

MC-Dropout

* Two equivalent ways to implement MC-Dropout:

Activation Dropout with rate « Dropout rows with rate
B! M -1 h! WwW! Lt
L1
Edzonﬁ?s | @ E — T X
Ll
Sample rows W from
l l
W M ¢(W3) = (1 —mN(M,nI)
oy A + N0,)
n—0

(Similar logic applies when including the bias terms, see lecture notes.)
(Notice that pytorch’s nn.Linear layer uses formats like xW7 instead of Wx.)

Gal and Ghahramani. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. ICML 2016.

52

Using other g distributions?

* What you’ll do for the next part of the tutorial:
* Implement MC-Dropout in 2 ways
* Run the regression sample with the 2 approximation methods discussed
e Compare with MFVI

Case study 1: Bayesian Optimisation

* Imagine you’d like to solve the following task:

X" = argmaxxg Zo(x) g:(%_

Case study 1: Bayesian Optimisation

* Imagine you’d like to solve the following task:

x" = argmax, fo(x) 51‘0\0)\7&**

Known functional form of f:
— N

// N

Gradient descent, Newton’s method,

55

Case study 1: Bayesian Optimisation

* Imagine you’d like to solve the following task:
x* = argmax, fo(x)

Known functional form of f,: Unknown functional form of f:

@—» l —> fo(x) + eL—
a— /\'—

/ : (can only query (noisy) function values)

, 0% >
Gradient descent, Newton’s method, -

L

Case study 1: Bayesian Optimisation

* |dea 1: fit a surrogate function fg = f,

’ Fit f using D —_)
xi—>.’ — v = fo(xp) +eg ——— e ° .

Collect a dataset D = {(x;, y)}\,
__/\/ [

fo (x) has a known (parametric) form

—_—
= find maximum using e.g., Newton’s method

Case study 1: Bayesian Optimisation

* |dea 1: fit a surrogate function fg = f,

‘ Fit fg using D
Xj = .' — Vi = folx) +e ——

Collect a dataset D = {(x;, y)}\,

* [ssues of this approach:
* Need to collect a lot of datapoints for accurate fitting of fg
* Do not consider uncertainty at unseen locations

Case study 1: Bayesian Optimisation
© ¢9

* |dea of BO: iterate the following steps @ 7*‘?‘%-/”3?2

* fit a surrogate function fg with uncertainty estimates
* Use the surrogate function to guide the dataset collection process

Update the dataset D = D U {(x,, y.)}
Fit fg using D

_’N
X, — l —_— ., = fo(x.) + €, —

with uncertainty
estimates

\ / * data

Propose next point to query: x, = argmax, a(x) s

— fo(x)

Srinivas et al. Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design. ICML 2010.
Snoek et al. Practical Bayesian Optimization of Machine Learning Algorithms. NeurlPS 2012.

— E[fp(x)]

acquisition function

59

Case study 1: Bayesian Optimisation

* Upper confidence bound (UCB): a widely used acquisition function

K_/\
< -
a(x) = m(x) + fa(x)<
Mean of fg(x) over 8 ~ q(6) Std of fy(x) over 8 ~ q(60) ~

a(x)
(UCB) g

— fo(x)

— E[fe(x)])
e data 6‘()

Srinivas et al. Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design. ICML 2010.
Snoek et al. Practical Bayesian Optimization of Machine Learning Algorithms. NeurlPS 2012.

60

Case study 1: Bayesian Optimisation

 What you’ll do for the case study part of the tutorial:
* Implement UCB acquisition function
* Run the BO example
* Play around with hyper-parameters and other settings

Example answers of the tutorial demos:
Regression: https://bit.ly/39eZHit

Part [ll: Bayesian ConvNets

e Classification example test

e Case study 2: Detecting adversarial examples

63

https://bit.ly/3Hd1Ass

Instructions for using this Google Colab notebook:
* Make sure you have signed in with your Google account;
* Click “File > Save a copy in Drive” to create your own copy;

e Use GPU: in “Runtime > Change runtime type”, choose
“GPU” for “hardware accelerator”

* Let’s play around with the demo using your own copy!

64

Case study 2 Detecting adversarial examples

0 = sy > ([ebe, mbfg)d,

* Hypothesis: ey

* Adversarial examples are regarded as OOD data 4\1/ 09D, ”6/57
* BNNs become uncertain about their prediction on OOD data

* = uncertainty measures can be used for detecting adversarial examples
~— T tee—— ., —

65

- v*
%:
Uncertainty measures ()
.- -
Total uncertainty = epistemic uncertainty + aleatoric uncertainty

T ~ B

Due to lack of “knowledge” Due to inherenf stochasticity in da@
(reducible when hwa) (non-reductofe)—

Imagine flipping a coin:
e Epistemic uncertainty: “How much do | believe the coin is fair?”

* Model’s belief after seeing the population

* Reduces when having more data
* Aleatoric uncertainty: “What’s the next coin flip outcome?”

* Individual experiment outcome

* Non-reducible) ,z;.:/'\f, r:i':f D D 7% YRR

GO0))) C&u) - €)' 7)

Uncertainty measures

Total uncertainty = epistemic uncertainty + aleatoric uncertainty

e AN

Due to lack of “knowledge” Due to inherent stochasticity in data
(reducible when having more data) (non-reducible)

Computing uncertainty in classification models: C, {ﬂv‘]

I

—

Hlp] = = ¥¢=1pclogpe, p=(P1, -, Pc), Zoca Pe =
High entropy: H[p] — log C < Low entropy: H[p] —» 0
_ L
be” ¢
1 1 1 111111 B=

~

e —

Uncertainty measures

Total uncertainty = epistemic uncertainty + aleatoric uncertainty

e AN

Due to lack of “knowledge” Due to inherent stochasticity in data

(reducible when having more data) @ @ (non-reducible)

Computing uncertainty in classification models:
Recall for Baye5|an predictive distribution:

)
T o 1x,D) = (e, 0)p(0ID)do
x*, D] =1[y 0 |x", D]+ E v |x*, 0]]
Hly"|] :_[/_, | 1+ Epo 0y [HLY |
Totalentropyofthe Mutual info Conditiondlfentropy
predictive distribution between y* gpd 0 under posterior

%ﬁ ‘Tb j_’f\? 4&14‘31& . 68

Uncertainty measures

Total uncertainty = epistemic uncertainty + aleatoric uncertainty

e AN

Due to lack of “knowledge” Due to inherent stochasticity in data
(reducible when having more data) (non-reducible)

Computing uncertainty in classification models:
Recall for Bayesian predictive distribution with approximation:

* * 1 * *
%D)zgz’ézlp(y | x*6k), O ~q(0)

Total entropy (for total uncertainty):
———

* k 1 * k
Hly*| x*,D] = H[Yk=1p(y" | X", 04)]

69

Uncertainty measures

Total uncertainty = epistemic uncertainty + aleatoric uncertainty

e AN

Due to lack of “knowledge” Due to inherent stochasticity in data
(reducible when having more data) (non-reducible)

Computing uncertainty in classification models:
Recall for Bayesian predictive distribution with approximation:

p(y* |x,D) =~ XK p(y* | x*,6), Ox ~ q(6)
Conditional entropy (for aleatoric uncertainty): lﬂfﬂ wacedts<y.
8 * - * *
Epo | py[HIy" |x7,0]] = = Xk HIp(y™ | x*,6,)] ©p ~ pLe|
— N~

70

Uncertainty measures

Total uncertainty = epistemic uncertainty + aleatoric uncertainty

e AN

Due to lack of “knowledge” Due to inherent stochasticity in data
(reducible when having more data) (non-reducible)

Computing uncertainty in classification models:
Recall for Bayesian predictive distribution with approximation:

k * 1 * k
p(* x5 D) == TE_ip(y* | %% 6k), 6k ~q(6)
Mutual information (for eplstemlc uncertal?ty) l}

[1y'56 1 x*,D] ~ HEE Ty p(y 12,801 ~ 2350, HIp(* | x°,6,)]

o~ vv\r

\/\,_\/ ’\'61’?‘\)’Dﬂ . .

Uncertainty measures

Total uncertainty = epistemic uncertainty + aleatoric uncertainty

e AN

Due to lack of “knowledge” Due to inherent stochasticity in data
(reducible when having more data) (non-reducible)

. o e vt«\\ (N}

Computing uncertainty in classification models: 555"7" Z
L]] L]]] . ° ° . . Yk

Recall for Bayesian predictive distribution with approximation: :

p(y* | x*D) = = Yp=1p(y" | x%,6k), O ~q0) ———

Mal information (for epistemic uncertainty) if you can do exact inference:
,\‘_Ll—[y*; 0 |x*,D] = Ep(y*lx*,D) [KL[QKQJ ”[,E(—Q——Dj]]

QI “What the model thinks the posterior is going to change if we add new observation at location x*”
) 72

[l = % uncertamy oo0/ny

At —
Case study 2: Detecting adversarial exampl

[—
€S

 What you’ll do for the case study part of the tutorial:
* Implement the uncertainty measures
* Total entropy, conditional entropy, and mutual info
* Run adversarial attacks on various trained networks

* See how diversity helps in detecting adversarial examples

* Detection by thresholding the uncertainty measures
* We consider best TPR with FPR < 5%

—

73

V), o p(\\f"\x*iel)'

—

Ensemble BNNs

* Define g distribution as mixture of mean-field Gaussian:

q(0) =<¥5_1q(8ls), q(0ls) = N(8; s, diag(c2))
* Objective is still a valid lower-bound to logp(D):
L= %Zﬁzl ELBO[q(0|s)], ELBO[q(8]s)] = Eqeg|s)[logp(D |)] — KL[q(O]s) || p(6)]

* The parameters of q(8|s) for different s are independent
= train S number of MFVI-BNNs independently

Ensemble BNNs are winning solutions of NeurlIPS 2021 Approximate Inference in BDL Competition 74

3\ e
=Y . — 7
PrO
V1
_ boYe5 (]
br(es w (pb! | okont \/N"”‘bm‘ !

Part IV: Advances & Future Works

e Various applications
* Overview of recent progresses

* Future directions

Applications of BNNs: Image Segmentation
»)&*«"‘\’ nsY B

AR

(d) Aleatoric
Uncertainty

(a) Input Image
— .

(b) Ground Truth (¢) Semantic
= "\ Segmentatio

Kendall and Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? NeurlIPS 2017

Ao

ncertainty

76

Applications of BNNs: Super Resolution

] W\
.) & = = 3
Low-res input ¢ | s s o
[=t o Q
e | O v} 3
[y 3 3 =]
= XY -8 8 Q
i = =
o e e el e | ——— o shuffle () >
X
K XLR) A
s peeaoe oo 3
L = | s
r > = H g 2
y ‘ o
| 1 5o 2
XLR 4 o 1| o N
o © m
1l o { 5]
———— s ————— = : : (DD
shuffle S(xLr) &

After Propagated Propagated
Super-resolution Intrinsic Uncertainty Parameter Uncertainty

Clinical image Warning Map

-

N

Tanno et al. Uncertainty Quantification in Deep Learning for Safer Neuroimage Enhancement. Neuroimage 2020

Auiepaosun uonoipald YH

77

Applications of BNNs: Continual Learning

0
|

v
—
s

dog or monkey?

©)
transfer % (’
\A Pt ID)

Update posterior

memorise

Posterior from the

“belief with the _previous tasks as prior
current task for the current task

LYc1(q:(6)) = Eq, 4 [logp(D, | 6)] — KLg:()]11|qc—1(6))]

o Nl e e
H 4
Nguyen et al. Variational Continual Learning. ICLR 2018 There are m ! (See Mlguel S Iecture)

Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past. NeurlIPS 2020 78

Recent Progress in BNNs: Inference

SGD: 041 =6 — nVQtU(Qt)
SGLD: 64,1 =0; — nVQtU(Ht) + ./ 27€, e ~N(0,I)

Stochastic gradient MCMC

Li et al. Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks. AAAI 2016
Zhang et al. Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning. ICLR 2020

79

Recent Progress in BNNs: Inference

SGD: 041 =6 — nVQtU(Qt)
SGLD: 64,1 =0; — T]V@tU(Ht) + ./ 27€, e ~N(0,I)

Stochastic gradient MCMC

Monte Carlo dropout

Gal and Ghahramani. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. ICML 2016

80

Recent Progress in BNNs: Inference

SGD: 041 =6 — UvetU(Qt)
SGLD: 64,1 =0; — nvgtU(Ht) + ./ 27€, e ~N(0,I)

Stochastic gradient MCMC

Deterministic approximations

Monte Carlo dropout

Hernandez-Lobato and Adams. Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks. ICML 2015

Wu et al. Deterministic Variational Inference for Robust Bayesian Neural Networks. ICLR 2019

Recent Progress in BNNs: Inference

_ . &
SGD: 0¢4q1 =6 — nVQtU(Qt) ¢ (D'V’"“' R
_ @ stehl
SGLD: 841 =0, —1Ve,U(0,) + /275,

e ~N(O0,I)
Stochastic gradient MCMC
__\——’_

Determ@pproximations

Ma et al. Variational Implicit Processes. ICML 2019
Sun et al. Functional Variational Bayesian Neural Networks. ICLR 2019

Monte Carlo dropout

(&]e(w by

zw/\c

Function space approximate inference

:Ib ~ DFPOT.

There are more! (See Miguel’s lecture)

82

Recent Progress in BNNs: Theory

05 1

1 -05

5O

Y

Connections to GPs:

* BNN with very wide hidden layers .
—_— -~
~ (@ausslan process

* Width limit convergence: in both
prior (Neal’s result) and posterior

Neal. Bayesian Learning for Neural Networks. PhD Thesis, 1996

Matthews et al. Gaussian Process Behaviour in Wide Deep Neural Networks. ICLR 2018
Lee et al. Deep Neural Networks as Gaussian Processes. ICLR 2018

Hron et al. Exact posterior distributions of wide Bayesian neural networks. 2020

83

Recent Progress in BNNs: Theory

ot

—)
q % |4
- 7
%0
V | R i A S
A
Connections to GPs: Approx. vs exact inference: U,\olmu[/'nt-
 BNN with very wide hidden layers * Theoretical limitation of MFVI in shallow
~ (Gaussian process BNNs with RelLU activations
e Width limit convergence: in both * Empirically deep BNNs with MVFI still
prior (Neal’s result) and posterior fails in certain cases

Foong et al. On the Expressiveness of Approximate Inference in Bayesian Neural Networks. NeurlPS 2020
Farquhar et al. Liberty or Depth: Deep Bayesian Neural Nets Do Not Need Complex Weight Posterior Approximations. NeurlPS 2020

Coker et al. Wide Mean-Field Bayesian Neural Networks Ignore the Data. AISTATS 2022 84

Future directions

* Understanding BNN bf&a}/l{g\ur vt

* How would q(f) ve given aJoartlcuIar form of q(W)?
mbjectlve appropriate for WIFVI? %M} MFVL
* We don’t understand very well the optimisation properties of VI-BNN _~

VL1

. QQWI complexity overhead: worth it?

 How can we make the approximate posterior more @ dfyh
in both time and space complexities? "

* Priors for BNNs
- W,
"« "Default” Gaussian prior N(W; 0, aI): the right prior? j’/

* How to think about priors in function space?

* Applications S
e Improve for applications that require good uncertainty estim@

L

Ritter et al. Sparse Uncertainty Representation in Deep Learning with Inducing Weights. NeurlIPS 2021
Fortuin. Priors in Bayesian deep learning: A review. International Statistical Review, 2022.

/

85

Thank You!

Questions? Ask NOW or email:
vingzhen.li@imperial.ac.uk

Example answers of the tutorial demos:

Regression: https://bit.ly/39eZHit
Classification: https://bit.ly/3QikcLO

86

