

An Introduction to Bayesian Neural Networks
Yingzhen Li

yingzhen.li@imperial.ac.uk

2

3

Bayesian Inference

! "| $%&% = ! " ! $%&% ")
! $%&%

• ! " : prior distribution
• ! #$%$ "): likelihood of " given #$%$
• ! "| #$%$: posterior distribution of " given #$%$
• ! #$%$: marginal likelihood/model evidence

! #$%$ = ∫ ! " ! #$%$ ")

* " = +("|#$%$)

Image courtesy of Sebastian Nowozin
Re-use of the image for any other purpose is not allowed 4

Bayesian Inference
• The central equation for Bayesian inference:

∫ " # $(#|'))#
“What is the prediction

distribution of the test output
given a test input?”

) " = *(,|-, "),
/ = observed datapoints

5

Bayesian Neural Network (BNN) 101

Classifying different types of animals:
• !: input image; ": output label
• Build a neural network with parameters #:

$ " !, # = '()*+,!()!(!))

6

Bayesian Neural Network (BNN) 101

Classifying different types of animals:
• !: input image; ": output label
• Build a neural network with parameters #:

$ " !, # = '()*+,!()!(!))

A typical neural network (with non-linearity /(⋅)):

)! ! = 1"/ 1"#$ / …/ 1$! + 4$ + 4"#$ + 4",

ℎ% = /(1% ℎ%#$ + 4%), ℎ$ = / 1$! + 4$.

Neural network parameters: # = 1% , 4% %&$"

7

Bayesian Neural Network (BNN) 101

Classifying different types of animals:
• !: input image; ": output label
• Build a neural network with parameters #:

$ " !, # = '()*+,!()!(!))

Typical deep learning solution:
• Optimize # to obtain a point estimates (MLE):

#∗ = ,7/+,! log $; #) ,
log $; #) = ∑(&$) log $ "(!(, #) , ; = !(, "((&$)

• Prediction: using $ "∗ !∗, #∗)

8

Bayesian Neural Network (BNN) 101

Classifying different types of animals:
• !: input image; ": output label
• Build a neural network with parameters #:

$ " !, # = '()*+,!()!(!))

Bayesian solution:
• Put a prior $(#) on network parameters #, e.g. Gaussian prior

$ # = =(#; 0, @* A)
• Compute the posterior distribution $ # ;):

$ # ;) ∝ $; #) $(#)
• Bayesian predictive inference:

$ "∗ !∗, ;) = C+ ! ,)[$ "∗ !∗, #)]

9

Bayesian Neural Network (BNN) 101

Classifying different types of animals:
• !: input image; ": output label
• Build a neural network with parameters #:

$ " !, # = '()*+,!()!(!))

Approximate (Bayesian) inference solution:
• Exact posterior intractable, use approximate posterior:

F # ≈ $ # ;)
• Approximate Bayesian predictive inference:

$ "∗ !∗, ;) ≈ C.(!)[$ "∗ !∗, #)]
• Monte Carlo approximation:

$ "∗ !∗, ;) ≈ $
0 ∑1&$

0 $ "∗ !∗, #1), #1 ∼ F(#)
10

Bayesian Neural Network (BNN) 101

Prediction on in-distribution data:
ensemble over networks, using weights sampled from !(#)

11

Bayesian Neural Network (BNN) 101

Prediction on OOD/noisy/adversarial data:
Disagreement (i.e. uncertainty) exists over networks sampled from !(#)

12

Bayesian Neural Network (BNN) 101

Prediction on OOD/noisy/adversarial data when ! # is over-confident:
Return confidently wrong answers (close to point estimate)

13

Bayesian Neural Network (BNN) 101

Prediction on in-distribution data when !(#) is under-confident:
Low accuracy in prediction tasks (less desirable)

14

Approximate Inference in BNNs
• Key steps of approximate inference in BNNs

1. Construct the ! # ≈ & # ') distribution
• Simple distributions: e.g. Mean-field Gaussian
• Structured approximations, e.g. low-rank Gaussians
• Others (non-Gaussian)

See my NeurIPS 2020 tutorial on approximate inference 15

Approximate Inference in BNNs
• Key steps of approximate inference in BNNs

1. Construct the ! # ≈ & # ') distribution
• Simple distributions: e.g. Mean-field Gaussian
• Structured approximations, e.g. low-rank Gaussians
• Others (non-Gaussian)

2. Fit the ! # distribution
• E.g. with variational inference

See my NeurIPS 2020 tutorial on approximate inference 16

Approximate Inference in BNNs
• Key steps of approximate inference in BNNs

1. Construct the ! # ≈ & # ') distribution
• Simple distributions: e.g. Mean-field Gaussian
• Structured approximations, e.g. low-rank Gaussians
• Others (non-Gaussian)

2. Fit the ! # distribution
• E.g. with variational inference

3. Compute prediction with Monte Carlo
approximations

See my NeurIPS 2020 tutorial on approximate inference 17

Today’s agenda

• Lecture on Basics: MFVI for BNNs
• Hands-on tutorial on BNNs
• i.e., programming exercises
• Also some case studies

18

Part I: Basics
• Variational inference
• Bayes-by-backprop

19

Bayesian Inference

! " | / = ! " ! / ")
! /

• ! " : prior
• ! - "): likelihood
• ! "| - : posterior
• ! - : marginal

Image courtesy of Sebastian Nowozin
Re-use of the image for any other purpose is not allowed 20

Variational Inference (VI)

The posterior The variational distribution

& # ') = & ' #)&(#)/& ' !.(#)

21

Inference as Optimization

Kullback-Leibler (KL) divergence

& # ') !.(#)

22

Kullback-Leibler Divergence

!"[$ % ||'(%)] = ∫ $ % log $(%)'(%) 0% = 10 1 [log
$ %
' %]

• When ' = $, KL is 0
• Otherwise, KL > 0
• It measures how similar are these two distributions

23

Let’s Derive the Objective of VI
• Minimize !"[$ % ||'(%|3)]

!"[$ % ||'(%|3)] = −E2 1 log ' % 3$ %

24

Let’s Derive the Objective of VI
• Minimize !"[$ % ||'(%|3)]

!"[$ % ||'(%|3)] = −10 1 log ' % 3$ %

= −10 1 log 3 1,4
5 4 0 1 = −10 1 log 3 1,4

0 1 − log '(3)

25

Let’s Derive the Objective of VI
• Minimize !"[$ % ||'(%|3)]

!"[$ % ||'(%|3)] = −10 1 log ' % 3$ %

= −10 1 log 3 1,4
5 4 0 1 = −10 1 log 3 1,4

0 1 − log '(3)

= log '(3) − 10 1 log ' %, 3$ %
Model Evidence

26

Let’s Derive the Objective of VI
• Minimize !"[$ % ||'(%|3)]

!"[$ % ||'(%|3)] = log '(3) − 10 1 log ' %, 3$ %

Maximize !! " log # ",%
! "

27

Let’s Derive the Objective of VI
• Minimize !"[$ % ||'(%|3)]

!"[$ % ||'(%|3)] = log '(3) − 10 1 log ' %, 3$ %

Maximize % = !! " log # ",%
! "

Evidence Lower Bound (ELBO)

log +(-)

23[5 " ||+("|-)]

ELBO

“Model Evidence = ELBO + KL”

Model Evidence

28

Variational Inference (VI)
The posterior The variational distribution

& # ') = & ' #)&(#)/& ' !.(#)

* = +7!(#) log p D, #!. # = log & ' − 3*[!.(#)||& #]

& # ')
! ∈ 8

!∗(#)

29

Variational Inference (VI)

• Rewriting the ELBO:

log &(') ≥ * = +7! # log & ' # − 3*[!. # ‖& #]
Data fitting term KL regulariser

(Negative) Data fitting term:
- Like the usual DL loss you’ll use for training neural networks
- …except that now the network’s weights are sampled from 5

KL regulariser:
- Make the 5 distribution closer to the prior
- Regularises the approximate posterior, especially when using e.g., Gaussian prior

30

Approximate Inference in BNNs
• Key steps of approximate inference in BNNs

1. Construct the ! # ≈ & # ') distribution
• Simple distributions: e.g. Mean-field Gaussian
• Structured approximations, e.g. low-rank Gaussians
• Others (non-Gaussian)

2. Fit the ! # distribution
• E.g. with variational inference

3. Compute prediction with Monte Carlo
approximations

See my NeurIPS 2020 tutorial on approximate inference 31

Approximate Inference in BNNs
• Step 1: construct the $ % ≈ ' % 3) distribution
• Example: Mean-field Gaussian distribution:

! # =;
9:;

<
! <9 !(=9)

! <9 =;
=>
!(<=>

9) , ! <=>
9 = >(<=>

9 ; @=>
9 , A=>9)

! =9 = ∏= ! ==9 , ! ==9 = >(==9; C=
9, D=9)

• Variational parameters: E = @=>
9 , log A=>9 , C=

9, log D=9 9:;
<

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015 32

Approximate Inference in BNNs
• Step 2: fit the $ % distribution:
• Variational inference: E∗ = FGHCFI *(E)

* E = +7!(?) log & ' #) − 3* !. # &(#)]

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015 33

Approximate Inference in BNNs
• Step 2: fit the $ % distribution:
• Variational inference: E∗ = FGHCFI *(E)

* E = +7!(?) log & ' #) − 3* !. # &(#)]
• First scalable technique: Stochastic optimization

• i.i.d. assumption of data: log * / ") = ∑!"#$ log * ,! -!, ")
• Enable mini-batch training with -%, ,% ∼ /& :

* E ≈ >
@ J

@:;

A
+7 ? log & K@ I@, #) − 3* ! # & #

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015 34

Approximate Inference in BNNs
• Step 2: fit the $ % distribution:
• Variational inference: E∗ = FGHCFI *(E)

* E = +7!(?) log & ' #) − 3* !. # &(#)]
• First scalable technique: Stochastic optimization

• i.i.d. assumption of data: log * / ") = ∑!"#$ log * ,! -!, ")
• Enable mini-batch training with -%, ,% ∼ /& :

* E ≈ >
@ J

@:;

A
+7 ? log & K@ I@, #) − 3* ! # & #

reweighting to ensure calibrated
posterior concentration

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015 35

Approximate Inference in BNNs
• Step 2: fit the $ % distribution:
• 2nd scalable technique: Monte Carlo sampling

• ;'())[log * , -, ")] intractable even with Gaussian > "
• Solution: Monte Carlo estimate:

;'()) log * , -, ") ≈ 1
A B

+

,
log * , -, "+) , "+ ∼ >(")

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015 36

Approximate Inference in BNNs
• Step 2: fit the $ % distribution:
• 2nd scalable technique: Monte Carlo sampling

• ;'())[log * , -, ")] intractable even with Gaussian > "
• Solution: Monte Carlo estimate:

;'()) log * , -, ") ≈ 1
A B

+

,
log * , -, "+) , "+ ∼ >(")

• Reparameterization trick to sample mean-field Gaussians:
"! ∼ 5 " ⇔ "! = D" + F" ⊙ H! , H! ∼ J(0, L)

M F H

"

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015 37

Approximate Inference in BNNs
• Step 2: fit the $ % distribution:
• 2nd scalable technique: Monte Carlo sampling

• ;'())[log * , -, ")] intractable even with Gaussian > "
• Solution: Monte Carlo estimate:

;'()) log * , -, ") ≈ 1
A B

+

,
log * , -, "+) , "+ ∼ >(")

⇒ O#(") log + P Q, ") ≈ 1
2 T

!

&
log + P Q, "! = D" + F"H!) , H! ∼ J(0, L)

• Reparameterization trick to sample mean-field Gaussians:
"! ∼ 5 " ⇔ "! = D" + F" ⊙ H! , H! ∼ J(0, L)

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015

M F H

"

…

3

backprop

38

Approximate Inference in BNNs
• Combining both steps:

* E ≈ >
@ J

@:;

A 1
3 J

U:;

V
log & K@ I@, #U) − 3* ! # & # , #U ∼ ! #

analytic between two Gaussians
(if not, can also be estimated with Monte Carlo)

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015

In regression:
+ P Q, ") = J(W" Q , F')

In classification:
+ P Q, ") = X$%YZ[\]^$_(_[Z]% = W"(Q))

39

Approximate Inference in BNNs
• Step 3: compute prediction with Monte Carlo approximations:

' 7∗ 8∗, 3) ≈ D
E ∑FGD

E ' 7∗ 8∗, %F), %F ∼ $(%)
Mean-field Gaussian case:

2! = 4" + 6"⊙ 8!, 8! ∼ ;(0, =)

Blundell et al. Weight Uncertainty in Neural Networks. ICML 2015 40

41

Part II: Bayesian MLPs
• Implement various BNN methods for MLP architectures
• Regression example test

• Case study 1: Bayesian Optimisation with UCB

42

https://bit.ly/3zF1zvA
Instructions for using this Google Colab notebook:
•Make sure you have signed in with your Google account;
• Click “File > Save a copy in Drive” to create your own copy;
• Let’s play around with the demo using your own copy!

43

Findings with MFVI for Bayesian MLPs

44

Findings with MFVI for Bayesian MLPs

• MFVI tends to underfit
• Initialisation matters
• Tuning the beta parameter also helps

45

Findings with MFVI for Bayesian MLPs

• MFVI tends to underfit
• Initialisation matters
• Tuning the beta parameter also helps

• Uncertainty behaviour

46

Using other * distributions?

• Using more complicated $ distributions?
• Pros: more flexible approximations ⇒ better posterior approximations (?)
• Cons: higher time & space complexities

47

Using other * distributions?

• Using more complicated $ distributions?
• Pros: more flexible approximations ⇒ better posterior approximations (?)
• Cons: higher time & space complexities

• We will look at 2 alternatives:
• “Last-layer BNN”: Full covariance Gaussian approximations for the last layer
• MC-Dropout: adding dropout layers and run them in both train & test time

48

“Last-layer BNN”

• Use deterministic layers for all but the last layer
• For the last layer: Use Full-covariance Gaussian approximate posterior:

! #< = >(DOP #< ; DOP Q< , Σ), #< = {<<, =<}
• For regression this is equivalent to Bayesian linear regression (BLR)

with NN-based non-linear features

Q W"!:#$!(Q) BLR + P Q, ")

! #9 = U <9 = @9, =9 = C9 , V = 1,… , * − 1,

49

“Last-layer BNN”

• Use deterministic layers for all but the last layer
• For the last layer: Use Full-covariance Gaussian approximate posterior
• For regression this is equivalent to Bayesian linear regression (BLR)

with NN-based non-linear features

Q W"!:#$!(Q) BLR + P Q, ")

* = +7 log & ' #) − 3* ! #< ‖ &(#<)

Use deterministic weights for _ = 1, … , 3 − 1
Sample b(∼ 5(b()

KL regulariser for the last layer only
50

MC-Dropout

• Add dropout layers to the network
• Perform dropout during training

Gal and Ghahramani. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. ICML 2016.

' 7∗ 8∗, 3) ≈ D
E ∑FGD

E ' 7∗ 8∗, %F), %F ∼ $(%)
The MC sampling procedure is implicitly defined

• In test time, run multiple forward passes with dropout

" = 10 log ' 3 %) − (1 − <)ℓH(>)
The MC sampling procedure is implicitly defined

L2 regulariser on the variational parameters

Dropout rate

51

MC-Dropout
• Two equivalent ways to implement MC-Dropout:

(Similar logic applies when including the bias terms, see lecture notes.)
(Notice that pytorch’s nn.Linear layer uses formats like Qb) instead of bQ.)

Gal and Ghahramani. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. ICML 2016.

dropout
units

dropout
rows

52

Using other * distributions?

• What you’ll do for the next part of the tutorial:
• Implement MC-Dropout in 2 ways
• Run the regression sample with the 2 approximation methods discussed
• Compare with MFVI

53

Case study 1: Bayesian Optimisation

• Imagine you’d like to solve the following task:

I∗ = FGHCFId Xe(I)

54

Case study 1: Bayesian Optimisation

• Imagine you’d like to solve the following task:

I∗ = FGHCFId Xe(I)

Known functional form of Xe:

Gradient descent, Newton’s method,
…

55

Case study 1: Bayesian Optimisation

• Imagine you’d like to solve the following task:

I∗ = FGHCFId Xe(I)

Known functional form of Xe:

Gradient descent, Newton’s method,
…

Unknown functional form of Xe:

(can only query (noisy) function values)

Q W* Q + H

56

Case study 1: Bayesian Optimisation

• Idea 1: fit a surrogate function ?1 ≈ ?I

Q+ P+ = W* Q+ + H+

Collect a dataset / = --, ,- -"#
$

Fit W" using -
W"(Q)

W"(Q) has a known (parametric) form

⇒ find maximum using e.g., Newton’s method

57

Case study 1: Bayesian Optimisation

• Idea 1: fit a surrogate function ?1 ≈ ?I

Q+ P+ = W* Q+ + H+

Collect a dataset / = --, ,- -"#
$

Fit W" using -
W"(Q)

• Issues of this approach:
• Need to collect a lot of datapoints for accurate fitting of X?
• Do not consider uncertainty at unseen locations

58

Case study 1: Bayesian Optimisation

• Idea of BO: iterate the following steps
• fit a surrogate function X? with uncertainty estimates
• Use the surrogate function to guide the dataset collection process

Q∗ P∗ = W* Q∗ + H∗

Update the dataset / = / ∪ { -∗, ,∗ }
Fit W" using -

Propose next point to query: Q∗ = \ZDQ- $(Q)

with uncertainty
estimates

data

W*(Q)
O[W" Q]

acquisition function

Srinivas et al. Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design. ICML 2010.
Snoek et al. Practical Bayesian Optimization of Machine Learning Algorithms. NeurIPS 2012. 59

Case study 1: Bayesian Optimisation

• Upper confidence bound (UCB): a widely used acquisition function

@ 8 = A 8 + CD(8)
Mean of W"(Q) over " ∼ 5(") Std of W"(Q) over " ∼ 5(")

data

W*(Q)
O[W" Q]

$(Q)
(UCB)

Srinivas et al. Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design. ICML 2010.
Snoek et al. Practical Bayesian Optimization of Machine Learning Algorithms. NeurIPS 2012. 60

Case study 1: Bayesian Optimisation

• What you’ll do for the case study part of the tutorial:
• Implement UCB acquisition function
• Run the BO example
• Play around with hyper-parameters and other settings

61

Example answers of the tutorial demos:
Regression: https://bit.ly/39eZHit

62

Part III: Bayesian ConvNets
• Classification example test
• Case study 2: Detecting adversarial examples

63

https://bit.ly/3Hd1Ass
Instructions for using this Google Colab notebook:
•Make sure you have signed in with your Google account;
• Click “File > Save a copy in Drive” to create your own copy;
• Use GPU: in “Runtime > Change runtime type”, choose

“GPU” for “hardware accelerator”
• Let’s play around with the demo using your own copy!

64

Case study 2: Detecting adversarial examples

• Hypothesis:
• Adversarial examples are regarded as OOD data
• BNNs become uncertain about their prediction on OOD data
• ⇒ uncertainty measures can be used for detecting adversarial examples

65

Uncertainty measures
Total uncertainty = epistemic uncertainty + aleatoric uncertainty

Due to lack of “knowledge”
(reducible when having more data)

Due to inherent stochasticity in data
(non-reducible)

Imagine flipping a coin:
• Epistemic uncertainty: “How much do I believe the coin is fair?”

• Model’s belief after seeing the population
• Reduces when having more data

• Aleatoric uncertainty: “What’s the next coin flip outcome?”
• Individual experiment outcome
• Non-reducible

66

Uncertainty measures
Total uncertainty = epistemic uncertainty + aleatoric uncertainty

Due to lack of “knowledge”
(reducible when having more data)

Due to inherent stochasticity in data
(non-reducible)

Computing uncertainty in classification models:

Y & = −∑f:;g &f log &f, * = *#, … , */ , ∑0"#/ *0 = 1

High entropy: h + → log X Low entropy: h + → 0

67

Uncertainty measures
Total uncertainty = epistemic uncertainty + aleatoric uncertainty

Due to lack of “knowledge”
(reducible when having more data)

Due to inherent stochasticity in data
(non-reducible)

Computing uncertainty in classification models:
Recall for Bayesian predictive distribution:

& K∗ I∗, ') = ∫ & K∗ I∗, #)&(# ' \#

E[7∗| 8∗, 3] = F 7∗; % 8∗, 3] + 15 1 4)[E 7∗ 8∗, %]]
Conditional entropy

under posterior
Mutual information
between P∗ and "

Total entropy of the
predictive distribution

68

Uncertainty measures
Total uncertainty = epistemic uncertainty + aleatoric uncertainty

Due to lack of “knowledge”
(reducible when having more data)

Due to inherent stochasticity in data
(non-reducible)

Computing uncertainty in classification models:
Recall for Bayesian predictive distribution with approximation:

& K∗ I∗, ') ≈ ;
V ∑U:;

V & K∗ I∗, #U) , #U ∼ ! #

E[7∗| 8∗, 3] ≈ E[DE ∑FGD
E ' 7∗ 8∗, %F)]

Total entropy (for total uncertainty):

69

Uncertainty measures
Total uncertainty = epistemic uncertainty + aleatoric uncertainty

Due to lack of “knowledge”
(reducible when having more data)

Due to inherent stochasticity in data
(non-reducible)

Computing uncertainty in classification models:
Recall for Bayesian predictive distribution with approximation:

& K∗ I∗, ') ≈ ;
V ∑U:;

V & K∗ I∗, #U) , #U ∼ ! #

15 1 4)[E 7∗ 8∗, %]] ≈ D
E∑FGD

E E[' 7∗ 8∗, %F)]
Conditional entropy (for aleatoric uncertainty):

70

Uncertainty measures
Total uncertainty = epistemic uncertainty + aleatoric uncertainty

Due to lack of “knowledge”
(reducible when having more data)

Due to inherent stochasticity in data
(non-reducible)

Computing uncertainty in classification models:
Recall for Bayesian predictive distribution with approximation:

& K∗ I∗, ') ≈ ;
V ∑U:;

V & K∗ I∗, #U) , #U ∼ ! #

F 7∗; % 8∗, 3] ≈ E[DE ∑FGD
E ' 7∗ 8∗, %F)] − D

E∑FGD
E E[' 7∗ 8∗, %F)]

Mutual information (for epistemic uncertainty):

71

Uncertainty measures
Total uncertainty = epistemic uncertainty + aleatoric uncertainty

Due to lack of “knowledge”
(reducible when having more data)

Due to inherent stochasticity in data
(non-reducible)

Computing uncertainty in classification models:
Recall for Bayesian predictive distribution with approximation:

& K∗ I∗, ') ≈ ;
V ∑U:;

V & K∗ I∗, #U) , #U ∼ ! #

F 7∗; % 8∗, 3] = 15(N∗|O∗,4)[!" ' % 3, 8∗, 7∗ ' %|3]]
Mutual information (for epistemic uncertainty) if you can do exact inference:

“What the model thinks the posterior is going to change if we add new observation at location Q∗”
72

Case study 2: Detecting adversarial examples

• What you’ll do for the case study part of the tutorial:
• Implement the uncertainty measures

• Total entropy, conditional entropy, and mutual info
• Run adversarial attacks on various trained networks
• See how diversity helps in detecting adversarial examples

• Detection by thresholding the uncertainty measures
• We consider best TPR with FPR ≤ 5%

73

Ensemble BNNs

• Define $ distribution as mixture of mean-field Gaussian:

! # = ;
j∑k:;

j !(#|]), ! #] = >(#; Qk, \^FH(_kl))

• Objective is still a valid lower-bound to log '(3):

* = ;
j∑k:;

j +*`a[!(#|])] , +*`a ! #] = +7(?|k) log & ' #) − 3* ! #|] ‖ &(#)

• The parameters of $(%|H) for	different	H are	independent
⇒ train T number of MFVI-BNNs independently

Ensemble BNNs are winning solutions of NeurIPS 2021 Approximate Inference in BDL Competition 74

Part IV: Advances & Future Works
• Various applications
• Overview of recent progresses

• Future directions

75

Applications of BNNs: Image Segmentation

Kendall and Gal. What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? NeurIPS 2017 76

Applications of BNNs: Super Resolution

Tanno et al. Uncertainty Quantification in Deep Learning for Safer Neuroimage Enhancement. Neuroimage 2020 77

Applications of BNNs: Continual Learning

Nguyen et al. Variational Continual Learning. ICLR 2018
Pan et al. Continual Deep Learning by Functional Regularisation of Memorable Past. NeurIPS 2020

"QRST $T % = 10"($) log ' 3T %) − !" $T % | $TUD(%)]

Posterior from the
previous tasks as prior
for the current task

Update posterior
belief with the
current task

There are more! (See Miguel’s lecture)
78

Recent Progress in BNNs: Inference

Li et al. Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks. AAAI 2016
Zhang et al. Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning. ICLR 2020

SGD:

SGLD:

Stochastic gradient MCMC

2#$% = 2# − ?∇"! AB(2#)
2#$% = 2# − ?∇"! AB 2# + 2?8, 8 ∼ ;(0, =)

79

Recent Progress in BNNs: Inference

Monte Carlo dropout

Gal and Ghahramani. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. ICML 2016

SGD:

SGLD:

Stochastic gradient MCMC

2#$% = 2# − ?∇"! AB(2#)
2#$% = 2# − ?∇"! AB 2# + 2?8, 8 ∼ ;(0, =)

80

Recent Progress in BNNs: Inference

Monte Carlo dropout

Deterministic approximations

Hernandez-Lobato and Adams. Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks. ICML 2015
Wu et al. Deterministic Variational Inference for Robust Bayesian Neural Networks. ICLR 2019

SGD:

SGLD:

Stochastic gradient MCMC

2#$% = 2# − ?∇"! AB(2#)
2#$% = 2# − ?∇"! AB 2# + 2?8, 8 ∼ ;(0, =)

81

Recent Progress in BNNs: Inference

Monte Carlo dropout

Deterministic approximations

≈

Function space approximate inference

Ma et al. Variational Implicit Processes. ICML 2019
Sun et al. Functional Variational Bayesian Neural Networks. ICLR 2019

SGD:

SGLD:

Stochastic gradient MCMC

2#$% = 2# − ?∇"! AB(2#)
2#$% = 2# − ?∇"! AB 2# + 2?8, 8 ∼ ;(0, =)

There are more! (See Miguel’s lecture)
82

Recent Progress in BNNs: Theory

Connections to GPs:
• BNN with very wide hidden layers
≈ Gaussian process

• Width limit convergence: in both
prior (Neal’s result) and posterior

Neal. Bayesian Learning for Neural Networks. PhD Thesis, 1996
Matthews et al. Gaussian Process Behaviour in Wide Deep Neural Networks. ICLR 2018
Lee et al. Deep Neural Networks as Gaussian Processes. ICLR 2018
Hron et al. Exact posterior distributions of wide Bayesian neural networks. 2020 83

Recent Progress in BNNs: Theory
HMC

MFVI

Approx. vs exact inference:
• Theoretical limitation of MFVI in shallow

BNNs with ReLU activations
• Empirically deep BNNs with MVFI still

fails in certain cases

Foong et al. On the Expressiveness of Approximate Inference in Bayesian Neural Networks. NeurIPS 2020
Farquhar et al. Liberty or Depth: Deep Bayesian Neural Nets Do Not Need Complex Weight Posterior Approximations. NeurIPS 2020
Coker et al. Wide Mean-Field Bayesian Neural Networks Ignore the Data. AISTATS 2022

Connections to GPs:
• BNN with very wide hidden layers
≈ Gaussian process

• Width limit convergence: in both
prior (Neal’s result) and posterior

84

Future directions
• Understanding BNN behaviour:

• How would F()) behave given a particular form of F(1)?
• Is weight-space objective appropriate for MFVI?
• We don’t understand very well the optimisation properties of VI-BNN

• Computational complexity overhead: worth it?
• How can we make the approximate posterior more efficient

in both time and space complexities?
• Priors for BNNs

• “Default” Gaussian prior =(1; 0, @*A): the right prior?
• How to think about priors in function space?

• Applications
• Improve for applications that require good uncertainty estimates

Ritter et al. Sparse Uncertainty Representation in Deep Learning with Inducing Weights. NeurIPS 2021
Fortuin. Priors in Bayesian deep learning: A review. International Statistical Review, 2022. 85

Thank You!
Questions? Ask NOW or email:

yingzhen.li@imperial.ac.uk

Example answers of the tutorial demos:
Regression: https://bit.ly/39eZHit

Classification: https://bit.ly/3QikcLO

86

